Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(20): 205301, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047238

ABSTRACT

We report on the observation of suppression and revival of coherent backscattering of ultracold atoms launched in an optical disorder in a quasi-2D geometry and submitted to a short dephasing pulse, as proposed by Micklitz, Müller, and Altland [Phys. Rev. B 91, 064203 (2015)]. This observation demonstrates a novel and general method to study weak localization by manipulating time reversal symmetry in disordered systems. In future experiments, this scheme could be extended to investigate higher order localization processes at the heart of Anderson (strong) localization.

2.
Phys Rev Lett ; 109(19): 195302, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215395

ABSTRACT

We report on the direct observation of coherent backscattering (CBS) of ultracold atoms in a quasi-two-dimensional configuration. Launching atoms with a well-defined momentum in a laser speckle disordered potential, we follow the progressive build up of the momentum scattering pattern, consisting of a ring associated with multiple elastic scattering, and the CBS peak in the backward direction. Monitoring the depletion of the initial momentum component and the formation of the angular ring profile allows us to determine microscopic transport quantities. We also study the time evolution of the CBS peak and find it in fair agreement with predictions, at long times as well as at short times. The observation of CBS can be considered a direct signature of coherence in quantum transport of particles in disordered media. It is responsible for the so called weak localization phenomenon, which is the precursor of Anderson localization.

3.
Phys Rev Lett ; 97(20): 200402, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155665

ABSTRACT

We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 microm during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.

4.
Phys Rev Lett ; 96(7): 070404, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16606065

ABSTRACT

We study the propagation of a noninteracting atom laser distorted by the strong lensing effect of the Bose-Einstein condensate (BEC) from which it is outcoupled. We observe a transverse structure containing caustics that vary with the density within the residing BEC. Using the WKB approximation, Fresnel-Kirchhoff integral formalism, and ABCD matrices, we are able to describe analytically the atom-laser propagation. This allows us to characterize the quality of the nonideal atom-laser beam by a generalized M2 factor defined in analogy to photon lasers. Finally we measure this quality factor for different lensing effects.

5.
Phys Rev Lett ; 92(12): 123601, 2004 Mar 26.
Article in English | MEDLINE | ID: mdl-15089670

ABSTRACT

We present an experimental demonstration of both quadrature and polarization entanglement generated via the interaction between a coherent linearly polarized field and cold atoms in a high finesse optical cavity. The nonlinear atom-field interaction produces two squeezed modes with orthogonal polarizations which are used to generate a pair of nonseparable beams, the entanglement of which is demonstrated by checking the inseparability criterion for continuous variables recently derived by Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)]] and calculating the entanglement of formation [Phys. Rev. Lett. 91, 107901 (2003)]].

6.
Phys Rev Lett ; 91(10): 103601, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-14525477

ABSTRACT

We study the interaction of a nearly resonant linearly polarized laser beam with a cloud of cold cesium atoms in a high finesse optical cavity. We show theoretically and experimentally that the cross-Kerr effect due to the saturation of the optical transition produces quadrature squeezing on both the mean field and the orthogonally polarized vacuum mode. An interpretation of this vacuum squeezing as polarization squeezing is given and a method for measuring quantum Stokes parameters for weak beams via a local oscillator is developed.

7.
Phys Rev Lett ; 88(25 Pt 1): 250404, 2002 Jun 24.
Article in English | MEDLINE | ID: mdl-12097079

ABSTRACT

We present a high resolution study of the specularity of the atomic reflection from an evanescent wave mirror using velocity selective Raman transitions. We observed a double structure in the velocity distribution after reflection: a peak consistent with specular reflection and a diffuse reflection pedestal whose contribution decreases rapidly with increasing detuning. The diffuse reflection is due to two distinct effects: spontaneous emission in the evanescent wave and roughness in the evanescent wave potential whose amplitude is smaller than the de Broglie wavelength of the reflected atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...