Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Opt Lett ; 43(9): 2106-2109, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714757

ABSTRACT

Crystalline optical whispering gallery mode resonators made from alkaline earth fluorides can achieve exceptionally large optical finesse, and are used in a variety of applications, from frequency stabilization and narrow linewidth lasers, to low-noise microwave generation or soliton Kerr frequency combs. Here we demonstrate an efficient coupling method to resonators of these materials, which employs photonic integrated waveguides on a chip based on silicon nitride. By converting a mode from silicon nitride to a free-hanging silica waveguide on a silicon chip, coupling to a crystalline resonator is achieved with a high extinction, while preserving a quality factor exceeding 200 million. This compact, heterogeneous integration of ultra-high Q-factor crystalline resonators with photonic waveguides provides a proof of concept for wafer scale integration and robust, compact packaging for a wide range of applications.

2.
Opt Lett ; 40(20): 4723-6, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469604

ABSTRACT

We demonstrate the all-optical stabilization of a low-noise temporal soliton based microresonator based optical frequency comb in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The carrier-envelope offset frequency is controlled by stabilizing the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out-of-loop comparison and measure the overlapping Allan deviation. This all-optical stabilization technique can prove useful as an actuator for self-referenced microresonator frequency combs.

3.
Phys Rev Lett ; 113(12): 123901, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25279630

ABSTRACT

The formation of temporal dissipative solitons in optical microresonators enables compact, high-repetition rate sources of ultrashort pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the microresonator mode spectrum on temporal soliton formation in a crystalline MgF2 microresonator. While an overall anomalous group velocity dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Avoided mode crossings induced by linear mode coupling in the resonator mode spectrum are found to prevent soliton formation when affecting resonator modes close to the pump laser frequency. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations. The presented results provide for the first time design criteria for the generation of temporal solitons in optical microresonators.

4.
Phys Rev Lett ; 110(26): 263002, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848869

ABSTRACT

We demonstrate a trapped-ion entangling-gate scheme proposed by Bermudez et al. [Phys. Rev. A 85, 040302 (2012)]. Simultaneous excitation of a strong carrier and a single-sideband transition enables deterministic creation of entangled states. The method works for magnetic field-insensitive states, is robust against thermal excitations, includes dynamical decoupling from qubit dephasing errors, and provides simplifications in experimental implementation compared to some other entangling gates with trapped ions. We achieve a Bell state fidelity of 0.974(4) and identify the main sources of error.

5.
Phys Rev Lett ; 110(15): 153002, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167259

ABSTRACT

We use electromagnetically-induced-transparency laser cooling to cool motional modes of a linear ion chain. As a demonstration, we apply electromagnetically-induced-transparency cooling on 24Mg+ ions to cool the axial modes of a 9Be+-24Mg+ ion pair and a 9Be+-24Mg+-24Mg+-9Be+ ion chain, thereby sympathetically cooling the 9Be+ ions. Compared to previous implementations of conventional Raman sideband cooling, we achieve approximately an order-of-magnitude reduction in the duration required to cool the modes to near the ground state and significant reduction in required laser intensity.

6.
Phys Rev Lett ; 109(10): 103001, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005284

ABSTRACT

Motional heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The detailed physical origin of this heating is not well understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role of adsorbates on the electrodes by identifying contaminant overlayers, implementing an in situ argon-ion-beam cleaning treatment, and measuring ion heating rates before and after treating the trap electrodes' surfaces. We find a 100-fold reduction in heating rate after treatment. The experiments described here are sensitive to low levels of electric-field noise in the MHz frequency range. Therefore, this approach could become a useful tool in surface science that complements established techniques.

7.
Phys Rev Lett ; 109(8): 080502, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002728

ABSTRACT

We investigate the dynamics of single and multiple ions during transport between and separation into spatially distinct locations in a multizone linear Paul trap. A single 9Be+ ion in a ~2 MHz harmonic well was transported 370 µm in 8 µs, corresponding to 16 periods of oscillation, with a gain of 0.1 motional quanta. Similar results were achieved for the transport of two ions. We also separated chains of up to 9 ions from one potential well to two distinct potential wells. With two ions this was accomplished in 55 µs, with excitations of approximately two quanta for each ion. Fast transport and separation can significantly reduce the time overhead in certain architectures for scalable quantum information processing with trapped ions.

8.
Phys Rev Lett ; 108(26): 260503, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23004946

ABSTRACT

We describe an extension of single-qubit gate randomized benchmarking that measures the error of multiqubit gates in a quantum information processor. This platform-independent protocol evaluates the performance of Clifford unitaries, which form a basis of fault-tolerant quantum computing. We implemented the benchmarking protocol with trapped ions and found an error per random two-qubit Clifford unitary of 0.162±0.008, thus setting the first benchmark for such unitaries. By implementing a second set of sequences with an extra two-qubit phase gate inserted after each step, we extracted an error per phase gate of 0.069±0.017. We conducted these experiments with transported, sympathetically cooled ions in a multizone Paul trap-a system that can in principle be scaled to larger numbers of ions.

9.
Nature ; 459(7247): 683-5, 2009 Jun 04.
Article in English | MEDLINE | ID: mdl-19494911

ABSTRACT

Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations as envisaged in the 'Schrödinger's cat' thought experiment (where the cat exists in a superposition of alive and dead states entangled with a radioactive nucleus). Such situations are not observed in nature. This may be simply due to our inability to sufficiently isolate the system of interest from the surrounding environment-a technical limitation. Another possibility is some as-yet-undiscovered mechanism that prevents the formation of macroscopic entangled states. Such a limitation might depend on the number of elementary constituents in the system or on the types of degrees of freedom that are entangled. Tests of the latter possibility have been made with photons, atoms and condensed matter devices. One system ubiquitous to nature where entanglement has not been previously demonstrated consists of distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator. These results show quantum entanglement in a degree of freedom that pervades the classical world. Such experiments may lead to the generation of entangled states of larger-scale mechanical oscillators, and offer possibilities for testing non-locality with mesoscopic systems. In addition, the control developed here is an important ingredient for scaling-up quantum information processing with trapped atomic ions.

10.
Nature ; 443(7113): 838-41, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17051214

ABSTRACT

Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

11.
Phys Rev Lett ; 96(25): 253003, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16907302

ABSTRACT

Individual laser-cooled 24Mg+ ions are confined in a linear Paul trap with a novel geometry where gold electrodes are located in a single plane and the ions are trapped 40 microm above this plane. The relatively simple trap design and fabrication procedure are important for large-scale quantum information processing (QIP) using ions. Measured ion motional frequencies are compared to simulations. Measurements of ion recooling after cooling is temporarily suspended yield a heating rate of approximately 5 motional quanta per millisecond for a trap frequency of 2.83 MHz, sufficiently low to be useful for QIP.

12.
Nature ; 438(7068): 639-42, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16319885

ABSTRACT

Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrödinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.

13.
Phys Rev Lett ; 95(3): 030403, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16090723

ABSTRACT

The coherence of a hyperfine-state superposition of a trapped 9Be+ ion in the presence of off-resonant light is studied experimentally. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. We observe coherence times that exceed the average scattering time of 19 photons which is determined from measured Stark shifts. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.

14.
Phys Rev Lett ; 95(6): 060502, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090932

ABSTRACT

We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B approximately = 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 s, an improvement of approximately 5 orders of magnitude from previous experiments with 9Be+. We also observe long coherence times of decoherence-free subspace logical qubits comprising two entangled physical qubits and discuss the merits of each type of qubit.

15.
Science ; 308(5724): 997-1000, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15890877

ABSTRACT

We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

16.
Phys Rev Lett ; 94(1): 010501, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698054

ABSTRACT

We investigate theoretically and experimentally how quantum state-detection efficiency is improved by the use of quantum information processing (QIP). Experimentally, we encode the state of one 9Be(+) ion qubit with one additional ancilla qubit. By measuring both qubits, we reduce the state-detection error in the presence of noise. The deviation from the theoretically allowed reduction is due to infidelities of the QIP operations. Applying this general scheme to more ancilla qubits suggests that error in the individual qubit measurements need not be a limit to scalable quantum computation.

17.
Nature ; 432(7017): 602-5, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15577904

ABSTRACT

Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.

18.
Phys Rev Lett ; 93(4): 040505, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15323743

ABSTRACT

We report the implementation of quantum dense coding on individual atomic qubits with the use of two trapped 9Be+ ions. The protocol is implemented with a complete Bell measurement that distinguishes the four operations used to encode two bits of classical information. We measure an average transmission fidelity of 0.85(1) and determine a channel capacity of 1.16(1).

19.
Science ; 304(5676): 1476-8, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15178794

ABSTRACT

The precision in spectroscopy of any quantum system is fundamentally limited by the Heisenberg uncertainty relation for energy and time. For N systems, this limit requires that they be in a quantum-mechanically entangled state. We describe a scalable method of spectroscopy that can potentially take full advantage of entanglement to reach the Heisenberg limit and has the practical advantage that the spectroscopic information is transferred to states with optimal protection against readout noise. We demonstrate our method experimentally with three beryllium ions. The spectroscopic sensitivity attained is 1.45(2) times as high as that of a perfect experiment with three non-entangled particles.

20.
Nature ; 429(6993): 737-9, 2004 Jun 17.
Article in English | MEDLINE | ID: mdl-15201904

ABSTRACT

Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.

SELECTION OF CITATIONS
SEARCH DETAIL
...