Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 203: 111855, 2022 01.
Article in English | MEDLINE | ID: mdl-34384750

ABSTRACT

Cadmium selenide (CdSe) semiconductor nanorods are prepared in hydrothermal process using hydrazine hydrate (N2H4.H2O) and ammonia (NH3.H2O) as reducing agents. The reaction time is increased to 7 h and the amount of hydrazine hydrate used is also increased to 15 mL which have resulted in diminished stacking faults in the CdSe nanorods prepared. The crystal structure, morphological variations, and size of the prepared CdSe nanorods are examined by XRD analysis. The crystalline size of the CdSe nanorods is 20-30 nm in diameter. HRTEM images reveal the formation of high order CdSe nanorods of the length about 25-40 nm. The bandgap in the CdSe nanoparticles is determined to be 2.17 eV. The peak at 595 nm in photoluminescence (PL) spectrum indicates oxygen vacancy defects in the prepared CdSe sample. The variation of dielectric properties with respect to temperature and frequency of pelletized CdSe is studied. High photocatalytic efficiency (98%) of catalyst/H2O2 is also achieved for decomposition of Rhodamine-B dye.


Subject(s)
Cadmium Compounds , Nanotubes , Selenium Compounds , Hydrogen Peroxide , Light
2.
Ultrason Sonochem ; 69: 105242, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32673961

ABSTRACT

In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015-1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 µA µM-1 cm-2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.


Subject(s)
Calcium/chemistry , Flutamide/blood , Graphite/chemistry , Nanostructures/chemistry , Titanium/chemistry , Ultrasonics/methods , Antineoplastic Agents, Hormonal/blood , Antineoplastic Agents, Hormonal/urine , Catalysis , Chemistry Techniques, Synthetic , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Flutamide/chemistry , Flutamide/urine , Humans , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...