Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(19): 6434-6445, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32355939

ABSTRACT

Attempts to synthesize plutonium(iv) silicate, PuSiO4, have been made on the basis of results recently reported in the literature for CeSiO4, ThSiO4, and USiO4 under hydrothermal conditions. Although it was not possible to prepare PuSiO4via applying the conditions reported for thorium and uranium, an efficient method of PuSiO4 synthesis was established by applying the conditions optimized for the CeSiO4 system. This method was based on the slow oxidation of plutonium(iii) silicate reactants under hydrothermal conditions at 150 °C in hydrochloric acid (pH = 3-4). These results shed new light on the potential behavior of plutonium in reductive environments, highlighting the representative nature of cerium surrogates when studying plutonium under such conditions and providing some important pieces of information regarding plutonium chemistry in silicate solutions.

2.
Dalton Trans ; 45(21): 8802-15, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27145713

ABSTRACT

PuO2 is considered an important material for current and future nuclear fuel; however it is a very refractive compound towards dissolution. Among other techniques, its reprocessing can be performed via complexing dissolution in concentrated and boiling nitric acid containing hydrofluoric acid, or via oxidant dissolution in the presence of reagents with redox couples having high potentials such as Ce(iv)/Ce(iii), or Ag(ii)/Ag(i). Reductive dissolution can be performed under softer conditions and is considered an alternative to these methods which may suffer from several drawbacks (corrosion, effluent management, compatibility with nuclear waste disposal, etc.). In this study, a sonochemical and reductive approach is investigated for PuO2 dissolution under relatively mild conditions. At the first stage, the experiments are performed with CeO2 as an inactive surrogate for PuO2. The quantitative dissolution of both oxides can be achieved under ultrasound (20 kHz, 0.35-0.70 W mL(-1)) in 0.5 M HNO3/0.1 M [N2H5NO3]/2 M HCOOH sparged with Ar at 33-35 °C in the presence of Ti particles as a generating source of reductive species. Ultrasound enables the depassivation of the Ti surface (usually strongly passivated in nitric solutions) through acoustic cavitation which then allows further generation of the intermediate Ti(iii) reductive species. Dissolution rates and yields can be further increased with the injection of dilute fluoride aliquots (NH4F or HF) in the sonicated solution to favor Ti chemical depassivation. The rapid and complete dissolution of PuO2 under selected conditions is accompanied by Pu(iii) accumulation in solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...