Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
J Mol Biol ; 305(4): 757-71, 2001 Jan 26.
Article in English | MEDLINE | ID: mdl-11162090

ABSTRACT

A 3D reconstruction at 25 A resolution of native hemoglobin of the polychaete worm Arenicola marina was carried out from frozen-hydrated specimens examined in the electron microscope. The reconstruction volume of this large extracellular multimeric respiratory pigment appears as a hexagonal bilayer structure with eclipsed vertices in its upper and lower hexagonal layers. Conversely, in hemoglobins of oligochaetes, achaetes, and vestimentiferans and in chlorocruorins of the Sabellidae (polychaete) family, the vertices of the upper layer are 16 degrees clockwise rotated with respect to those of the lower layer. The fact that two other polychaete hemoglobins (Alvinella pompejana and Tylorrhynchus heterochaetus) have the same architecture as Arenicola led us to define two types of hexagonal bilayer hemoglobins/chlorocruorins: (i) type-I present in oligochaete, achaete, and vestimentiferan hemoglobins and in Sabellidae chlorocruorins; and (ii) type-II present in polychaete hemoglobins. A comparative study of the hemoglobins of Lumbricus terrestris (type-I) and Arenicola marina (type-II) showed that only two small differences located in the c4 and c5 linking units are responsible of the important architectural difference present in oligomers. A likely scheme proposed to explain the phylogenic distribution of the two types suggests that Clitellata, Sabellida (polychaete), and vestimentiferan hemoglobins and chlorocruorins derive from a type-I ancestral molecule, while Terebellida (Alvinella), Phyllodocida (Tylorrhynchus), and Scolecida (Arenicola) and possibly other polychaetes derive from an ancestor molecule with type-II hemoglobin. The architectures of the hollow globular substructures are highly similar in Arenicola and Lumbricus hemoglobins, with 12 globin chains and three linking units (c3a, c3b, and c4). The central piece of Arenicola hemoglobin is an ellipsoid while that of Lumbricus is a toroid. No phylogenic correlation could be found between the structure of the central pieces and the architecture type.


Subject(s)
Cryoelectron Microscopy , Hemoglobins/chemistry , Hemoglobins/ultrastructure , Oligochaeta/chemistry , Polychaeta/chemistry , Animals , Computer Graphics , Hemoglobins/classification , Image Processing, Computer-Assisted , Models, Molecular , Phylogeny , Protein Structure, Quaternary , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...