Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Oncoimmunology ; 13(1): 2377830, 2024.
Article in English | MEDLINE | ID: mdl-39005546

ABSTRACT

Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.


Subject(s)
Coculture Techniques , Macrophages , Measles virus , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Humans , Measles virus/genetics , Measles virus/physiology , Tumor Microenvironment/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/therapy , Interferon Type I/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Cell Differentiation
2.
Front Immunol ; 13: 1026994, 2022.
Article in English | MEDLINE | ID: mdl-36479125

ABSTRACT

In mice, microbiota-induced Tregs both maintain intestinal homeostasis and provide resistance to immuno-pathologies in the adult. Identifying their human functional counterpart therefore represents an important goal. We discovered, in the human colonic lamina propria and blood, a FoxP3-negative IL-10-secreting Treg subset, which co-expresses CD4 and CD8α (hence named DP8α) and displays a TCR-reactivity against Faecalibacterium prausnitzii, indicating a role for this symbiotic bacterium in their induction. Moreover, supporting their role in intestinal homeostasis, we previously reported both their drastic decrease in IBD patients and their protective role in vivo against intestinal inflammation, in mice. Here, we aimed at identifying the genomic, phenotypic and functional signatures of these microbiota-induced Tregs, towards delineating their physiological role(s) and clinical potential. Human F. prausnitzii-reactive DP8α Treg clones were derived from both the colonic lamina propria and blood. RNA-sequencing, flow cytometry and functional assays were performed to characterize their response upon activation and compare them to donor- and tissue-matched FoxP3+ Treg clones. DP8α Tregs exhibited a unique mixed Tr1-like/cytotoxic CD4+ T cell-profile and shared the RORγt and MAF master genes with mouse gut microbiota-induced FoxP3+ Tregs. We revealed their potent cytotoxic, chemotactic and IgA-promoting abilities, which were confirmed using in vitro assays. Therefore, besides their induction by a Clostridium bacterium, DP8α Tregs also partake master genes with mouse microbiota-induced Tregs. The present identification of their complete signature and novel functional properties, should be key in delineating the in vivo roles and therapeutic applications of these unique human microbiota-induced Tregs through their study in pathological contexts, particularly in inflammatory bowel diseases.


Subject(s)
Biological Assay , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Biological Transport
3.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077799

ABSTRACT

While immune checkpoint (IC) therapies, particularly those targeting the PD-1/PD-L1 axis, have revolutionized the treatment of melanoma and several other cancers, their effect remains very limited in colorectal cancer (CRC). To define a comprehensive landscape of ICs in the human CRC tumor microenvironment (TME), we evaluated, using multiparametric flow cytometry, their ex vivo expression via tumor-infiltrating lymphocytes (TILs) (n = 40 CRCs) as well as that of their respective ligands on tumor and myeloid cells (n = 29). Supervised flow cytometry analyses showed that (i) most CD3+ TILs expressed PD-1 and TIGIT and, to a lesser extent, Tim-3, Lag3 and NKG2A, and (ii) EpCAM+ tumor cells and CD11b+ myeloid cells differed in their IC ligand expression profile, with a strikingly high expression of CD155 by tumor cells. An in situ analysis of IC and their ligands using immunohistochemistry on paraffin sections of CRC confirmed the overexpression of TIGIT and its ligand, CD155, in the TME. Most interestingly, an unsupervised clustering analysis of IC co-expression on CD4+ and CD8+ TILs identified two tumor subgroups, named IChigh and IClow. Altogether, our findings highlight the TIGIT/CD155 axis as a potential target that could be used in combination IC therapy in CRC.

4.
Oncoimmunology ; 11(1): 2046931, 2022.
Article in English | MEDLINE | ID: mdl-35295095

ABSTRACT

Recently, the inhibitory CD94/NKG2A receptor has joined the group of immune checkpoints (ICs) and its expression has been documented in NK cells and CD8+ T lymphocytes in several cancers and some infectious diseases. In colorectal cancer (CRC), we previously reported that NKG2A+ tumor-infiltrating lymphocytes (TILs) are predominantly CD8+ αß T cells and that CD94 overexpression and/or its ligand HLA-E were associated with a poor prognosis. This study aimed to thoroughly characterize the NKG2A+ CD8+ TIL subpopulation and document the impact of NKG2A on anti-tumor responses in CRC. Our findings highlight new features of this subpopulation: (i) enrichment in colorectal tumors compared to paired normal colonic mucosa, (ii) their character as tissue-resident T cells and their majority terminal exhaustion status, (iii) co-expression of other ICs delineating two subgroups differing mainly in the level of NKG2A expression and the presence of PD-1, (iv) high functional avidity despite reduced proliferative capacity and finally (v) inhibition of anti-tumor reactivity that is overcome by blocking NKG2A. From a clinical point of view, these results open a promising alternative for immunotherapies based on NKG2A blockade in CRC, which could be performed alone or in combination with other IC inhibitors, adoptive cell transfer or therapeutic vaccination.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , NK Cell Lectin-Like Receptor Subfamily C , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Humans , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , NK Cell Lectin-Like Receptor Subfamily C/immunology
5.
Sci Rep ; 11(1): 17234, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446788

ABSTRACT

Over the past two decades, there has been a great interest in the study of HLA-E-restricted αß T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.


Subject(s)
Epitopes, T-Lymphocyte/chemistry , Histocompatibility Antigens Class I/chemistry , Major Histocompatibility Complex/immunology , Peptides/chemistry , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , High-Throughput Screening Assays , Histocompatibility Antigens Class I/immunology , Humans , Immunologic Techniques , Photochemical Processes , Protein Binding , Protein Conformation , T-Lymphocytes, Cytotoxic/immunology , HLA-E Antigens
6.
Front Oncol ; 11: 684478, 2021.
Article in English | MEDLINE | ID: mdl-34211852

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) in the anti-tumor effect of cetuximab in metastatic colorectal cancer (mCRC) is only based on the impact of FcγRIIIA (CD16) polymorphisms as predictive of therapeutic response. However, nature, density and therapeutic impact of FcγRIIIA+ (CD16) effector cells in tumor remain poorly documented. Moreover, the inhibition of cetuximab-mediated ADCC induced by NK cells by the engagement of the new inhibitory CD94-NKG2A immune checkpoint has only been demonstrated in vitro. This multicentric study aimed to determine, on paired primary and metastatic tissue samples from a cohort of mCRC patients treated with cetuximab: 1) the nature and density of FcγRIIIA+ (CD16) immune cells, 2) the expression profile of HLA-E/ß2m by tumor cells as well as the density of CD94+ immune cells and 3) their impact on both objective response to cetuximab and survival. We demonstrated that FcγRIIIA+ (CD16) intraepithelial immune cells mainly correspond to tumor-associated neutrophils (TAN), and their high density in metastases was significantly associated with a better response to cetuximab, independently of the expression of the CD94/NKG2A inhibitory immune checkpoint. However, HLA-E/ß2m, preferentially overexpressed in metastases compared with primary tumors and associated with CD94+ tumor infiltrating lymphocytes (TILs), was associated with a poor overall survival. Altogether, these results strongly support the use of bispecific antibodies directed against both EGFR and FcγRIIIA (CD16) in mCRC patients, to boost cetuximab-mediated ADCC in RAS wild-type mCRC patients. The preferential overexpression of HLA-E/ß2m in metastases, associated with CD94+ TILs and responsible for a poor prognosis, provides convincing arguments to inhibit this new immune checkpoint with monalizumab, a humanized anti-NKG2A antibody, in combination with anti- FcγRIIIA/EGFR bispecific antibodies as a promising therapeutic perspective in RAS wild-type mCRC patients.

7.
Cancer Immunol Immunother ; 70(10): 3015-3030, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34120214

ABSTRACT

Adoptive cell transfer (ACT) of tumor-specific T lymphocytes represents a relevant therapeutic strategy to treat metastatic melanoma patients. Ideal T-cells should combine tumor specificity and reactivity with survival in vivo, while avoiding autoimmune side effects. Here we report results from a Phase I/II clinical trial (NCT02424916, performed between 2015 and 2018) in which 6 metastatic HLA-A2 melanoma patients received autologous antigen-specific T-cells produced from PBMC, after peptide stimulation in vitro, followed by sorting with HLA-peptide multimers and amplification. Each patient received a combination of Melan-A and MELOE-1 polyclonal specific T-cells, whose specificity and anti-tumor reactivity were checked prior to injection, with subcutaneous IL-2. Transferred T-cells were also characterized in terms of functional avidity, diversity and phenotype and their blood persistence was evaluated. An increase in specific T-cells was detected in the blood of all patients at day 1 and progressively disappeared from day 7 onwards. No serious adverse events occurred after this ACT. Clinically, five patients progressed and one patient experienced a partial response following therapy. Melan-A and MELOE-1 specific T-cells infused to this patient were diverse, of high avidity, with a high proportion of T lymphocytes co-expressing PD-1 and TIGIT but few other exhaustion markers. In conclusion, we demonstrated the feasibility and safety of ACT with multimer-sorted Melan-A and MELOE-1 specific T cells to metastatic melanoma patients. The clinical efficacy of such therapeutic strategy could be further enhanced by the selection of highly reactive T-cells, based on PD-1 and TIGIT co-expression, and a combination with ICI, such as anti-PD-1.


Subject(s)
Immunotherapy, Adoptive/methods , Melanoma/immunology , T-Lymphocytes/metabolism , Adult , Aged , Cell Line, Tumor , Humans , Middle Aged
8.
Front Microbiol ; 12: 641460, 2021.
Article in English | MEDLINE | ID: mdl-33643275

ABSTRACT

Human serum contains large amounts of anti-carbohydrate antibodies, some of which may recognize epitopes on viral glycans. Here, we tested the hypothesis that such antibodies may confer protection against COVID-19 so that patients would be preferentially found among people with low amounts of specific anti-carbohydrate antibodies since individual repertoires vary considerably. After selecting glycan epitopes commonly represented in the human anti-carbohydrate antibody repertoire that may also be expressed on viral glycans, plasma levels of the corresponding antibodies were determined by ELISA in 88 SARS-CoV-2 infected individuals, including 13 asymptomatic, and in 82 non-infected controls. We observed that anti-Tn antibodies levels were significantly lower in patients as compared to non-infected individuals. This was not observed for any of the other tested carbohydrate epitopes, including anti-αGal antibodies used as a negative control since the epitope cannot be synthesized by humans. Owing to structural homologies with blood groups A and B antigens, we also observed that anti-Tn and anti-αGal antibodies levels were lower in blood group A and B, respectively. Analyses of correlations between anti-Tn and the other anti-carbohydrates tested revealed divergent patterns of correlations between patients and controls, suggesting qualitative differences in addition to the quantitative difference. Furthermore, anti-Tn levels correlated with anti-S protein levels in the patients' group, suggesting that anti-Tn might contribute to the development of the specific antiviral response. Overall, this first analysis allows to hypothesize that natural anti-Tn antibodies might be protective against COVID-19.

9.
J Immunother Cancer ; 8(2)2020 11.
Article in English | MEDLINE | ID: mdl-33188038

ABSTRACT

BACKGROUND: Clinical benefit from programmed cell death 1 receptor (PD-1) inhibitors relies on reinvigoration of endogenous antitumor immunity. Nonetheless, robust immunological markers, based on circulating immune cell subsets associated with therapeutic efficacy are yet to be validated. METHODS: We isolated peripheral blood mononuclear cell from three independent cohorts of melanoma and Merkel cell carcinoma patients treated with PD-1 inhibitor, at baseline and longitudinally after therapy. Using multiparameter flow cytometry and cell sorting, we isolated four subsets of CD8+ T cells, based on PD-1 and TIGIT expression profiles. We performed phenotypic characterization, T cell receptor sequencing, targeted transcriptomic analysis and antitumor reactivity assays to thoroughly characterize each of these subsets. RESULTS: We documented that the frequency of circulating PD-1+TIGIT+ (DPOS) CD8+ T-cells after 1 month of anti-PD-1 therapy was associated with clinical response and overall survival. This DPOS T-cell population was enriched in highly activated T-cells, tumor-specific and emerging T-cell clonotypes and T lymphocytes overexpressing CXCR5, a key marker of the CD8 cytotoxic follicular T cell population. Additionally, transcriptomic profiling defined a specific gene signature for this population as well as the overexpression of specific pathways associated with the therapeutic response. CONCLUSIONS: Our results provide a convincing rationale for monitoring this PD-1+TIGIT+ circulating population as an early cellular-based marker of therapeutic response to anti-PD-1 therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Merkel Cell/immunology , Immune Checkpoint Inhibitors/pharmacology , Melanoma/immunology , Programmed Cell Death 1 Receptor/biosynthesis , Receptors, Immunologic/biosynthesis , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Merkel Cell/blood , Carcinoma, Merkel Cell/drug therapy , Humans , Melanoma/blood , Melanoma/drug therapy , Predictive Value of Tests , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/blood , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR5/immunology , Receptors, Immunologic/blood , Receptors, Immunologic/immunology , T-Lymphocyte Subsets/immunology
10.
Mod Pathol ; 33(3): 468-482, 2020 03.
Article in English | MEDLINE | ID: mdl-31409873

ABSTRACT

We previously demonstrated that HLA-E/ß2m overexpression by tumor cells in colorectal cancers is associated with an unfavorable prognosis. However, the expression of its specific receptor CD94/NKG2 by intraepithelial tumor-infiltrating lymphocytes, their exact phenotype and function, as well as the relation with the molecular status of colorectal cancer and prognosis remain unknown. Based on a retrospective cohort of 234 colorectal cancer patients, we assessed the expression of HLA-E, ß2m, CD94, CD8, and NKp46 by immunohistochemistry on tissue microarray. The expression profile of HLA-E/ß2m on tumor cells and the density of tumor-infiltrating lymphocytes were correlated to the clinicopathological and molecular features (Microsatellite status, BRAF and RAS mutations). Then, from the primary tumors of 27 prospective colorectal cancers, we characterized by multiparameter flow cytometry the nature (T and/or NK cells) and the co-expression of the inhibitory NKG2A or activating NKG2C chain of ex vivo isolated CD94+ tumor-infiltrating lymphocytes. Their biological function was determined using an in vitro redirected cytolytic activity assay. Our results showed that HLA-E/ß2m was preferentially overexpressed in microsatellite instable tumors compared with microsatellite stable ones (45% vs. 19%, respectively, p = 0.0001), irrespective of the RAS or BRAF mutational status. However, HLA-E/ß2m+ colorectal cancers were significantly enriched in CD94+ intraepithelial tumor-infiltrating lymphocytes in microsatellite instable as well as in microsatellite stable tumors. Those CD94+ tumor-infiltrating lymphocytes mostly corresponded to CD8+ αß T cells, and  to a lesser extent to NK cells, and mainly co-expressed a functional inhibitory NKG2A chain. Finally, a high number of CD94+ intraepithelial tumor-infiltrating lymphocytes in close contact with tumor cells was independently associated with a worse overall survival. In conclusion, these findings strongly suggest that HLA-E/ß2m-CD94/NKG2A represents a new druggable inhibitory immune checkpoint, preferentially expressed in microsatellite instable tumors, but also in a subgroup of microsatellite stable tumors, leading to a new opportunity in colorectal cancer immunotherapies.


Subject(s)
Biomarkers, Tumor/analysis , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Histocompatibility Antigens Class I/analysis , Lymphocytes, Tumor-Infiltrating/immunology , NK Cell Lectin-Like Receptor Subfamily C/analysis , NK Cell Lectin-Like Receptor Subfamily D/analysis , beta 2-Microglobulin/analysis , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Coculture Techniques , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mice , Microsatellite Instability , Middle Aged , Molecular Targeted Therapy , NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily D/antagonists & inhibitors , Prospective Studies , Retrospective Studies , Tissue Array Analysis , Young Adult , HLA-E Antigens
11.
Cancer Immunol Res ; 8(2): 255-267, 2020 02.
Article in English | MEDLINE | ID: mdl-31857348

ABSTRACT

MicroRNAs (miRNA), small noncoding RNAs that regulate gene expression, exist not only in cells but also in a variety of body fluids. These circulating miRNAs could enable intercellular communication. miRNAs are packaged in membrane-encapsulated vesicles, such as exosomes, or protected by RNA-binding proteins. Here, we report that miRNAs included in human melanoma exosomes regulate the tumor immune response. Using microscopy and flow cytometry, we demonstrate that CD8+ T cells internalize exosomes from different tumor types even if these cells do not internalize vesicles as readily as other immune cells. We explored the function of melanoma-derived exosomes in CD8+ T cells and showed that these exosomes downregulate T-cell responses through decreased T-cell receptor (TCR) signaling and diminished cytokine and granzyme B secretions. The result reduces the cells' cytotoxic activity. Using mimics, we found that miRNAs enriched in exosomes-such as Homo sapiens (hsa)-miR-3187-3p, hsa-miR-498, hsa-miR-122, hsa-miR149, and hsa-miR-181a/b-regulate TCR signaling and TNFα secretion. Our observations suggest that miRNAs in melanoma-derived exosomes aid tumor immune evasion and could be a therapeutic target.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Exosomes/genetics , Melanoma/immunology , MicroRNAs/genetics , Signal Transduction , Skin Neoplasms/immunology , Tumor Escape , Cell Communication , Cell Line, Tumor , Cells, Cultured , Exosomes/immunology , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , MicroRNAs/immunology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
12.
PLoS Pathog ; 14(4): e1007041, 2018 04.
Article in English | MEDLINE | ID: mdl-29709038

ABSTRACT

Immune response against human cytomegalovirus (HCMV) includes a set of persistent cytotoxic NK and CD8 T cells devoted to eliminate infected cells and to prevent reactivation. CD8 T cells against HCMV antigens (pp65, IE1) presented by HLA class-I molecules are well characterized and they associate with efficient virus control. HLA-E-restricted CD8 T cells targeting HCMV UL40 signal peptides (HLA-EUL40) have recently emerged as a non-conventional T-cell response also observed in some hosts. The occurrence, specificity and features of HLA-EUL40 CD8 T-cell responses remain mostly unknown. Here, we detected and quantified these responses in blood samples from healthy blood donors (n = 25) and kidney transplant recipients (n = 121) and we investigated the biological determinants involved in their occurrence. Longitudinal and phenotype ex vivo analyses were performed in comparison to HLA-A*02/pp65-specific CD8 T cells. Using a set of 11 HLA-E/UL40 peptide tetramers we demonstrated the presence of HLA-EUL40 CD8 αßT cells in up to 32% of seropositive HCMV+ hosts that may represent up to 38% of total circulating CD8 T-cells at a time point suggesting a strong expansion post-infection. Host's HLA-A*02 allele, HLA-E *01:01/*01:03 genotype and sequence of the UL40 peptide from the infecting strain are major factors affecting the incidence of HLA-EUL40 CD8 T cells. These cells are effector memory CD8 (CD45RAhighROlow, CCR7-, CD27-, CD28-) characterized by a low level of PD-1 expression. HLA-EUL40 responses appear early post-infection and display a broad, unbiased, Vß repertoire. Although induced in HCMV strain-dependent, UL4015-23-specific manner, HLA-EUL40 CD8 T cells are reactive toward a broader set of nonapeptides varying in 1-3 residues including most HLA-I signal peptides. Thus, HCMV induces strong and life-long lasting HLA-EUL40 CD8 T cells with potential allogeneic or/and autologous reactivity that take place selectively in at least a third of infections according to virus strain and host HLA concordance.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Histocompatibility Antigens Class I/metabolism , Kidney Transplantation , Peptide Fragments/pharmacology , Viral Proteins/metabolism , Adult , Aged , Antigen Presentation , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Case-Control Studies , Cells, Cultured , Cytomegalovirus/drug effects , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Female , Histocompatibility Antigens Class I/immunology , Humans , Male , Middle Aged , Retrospective Studies , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/virology , Transplantation, Autologous , HLA-E Antigens
13.
Oncoimmunology ; 5(12): e1250991, 2016.
Article in English | MEDLINE | ID: mdl-28123891

ABSTRACT

Although CD4+CD8+ double positive (DP) T cells represent a small fraction of peripheral T lymphocytes in healthy human donors, their frequency is often increased under pathological conditions (in blood and targeted tissues). In solid cancers such as melanoma, we previously demonstrated an enrichment of tumor reactive CD4lowCD8highαß DP T cells among tumor-infiltrating lymphocytes of unknown function. Similarly to their single positive (SP) CD8+ counterparts, intra-melanoma DP T cells recognized melanoma cell lines in an HLA-class-I restricted context. However, they presented a poor cytotoxic activity but a strong production of diverse Th1 and Th2 cytokines. The aim of this study was to clearly define the role of intra-melanoma CD4lowCD8highαß DP T cells in the antitumor immune response. Based on a comparative transcriptome analysis between intra-melanoma SP CD4+, SP CD8+ and DP autologous melanoma-infiltrating T-cell compartments, we evidenced an overexpression of the CD40L co-stimulatory molecule on activated DP T cells. We showed that, like SP CD4+ T cells, and through CD40L involvement, DP T cells are able to induce both proliferation and differentiation of B lymphocytes and maturation of functional DCs able to efficiently prime cytotoxic melanoma-specific CD8 T-cell responses. Taken together, these results highlight the helper potential of atypical DP T cells and their role in potentiating antitumor response.

SELECTION OF CITATIONS
SEARCH DETAIL
...