Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(41): 28150-28161, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37818652

ABSTRACT

Among classical nanoporous oxide membranes, anodic aluminum oxide (AAO) membranes, made of non-connected, parallel and ordered nanochannels, are very interesting nanoporous model systems widely used for multiple applications. Since most of these applications involve local phenomena at the nanochannel surface, the fine description of the electrical surface behavior in aqueous solution is thus of primordial interest. Here, we use an original experimental approach combining several electrokinetic techniques (tangential and transverse streaming potential as well as electrophoretic mobility experiments) to measure the ζ-potential and determine the surface isoelectric points (IEPs) of several AAOs having different characteristic sizes and compositions. Using such an approach, all the different surfaces available in AAOs can be probed: outer surfaces (top and bottom planes), pore wall surfaces (i.e., inner surfaces) and surfaces created by the grinding of the AAOs. We find clear IEP differences between the outer, pore wall and ground surfaces and discuss these in terms of nanochannel and surface morphology (curvature and roughness) and of modifications of the chemical environment of the surface hydroxyl groups. These results highlight the heterogeneities between the different surfaces of these AAO membranes and emphasize the necessity to combine complementary electrokinetic techniques to properly understand the material, an approach which can be extended to many nanoporous systems.

2.
ACS Macro Lett ; 9(6): 794-798, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35648528

ABSTRACT

It remains a great experimental challenge to obtain quantitative information on the polyelectrolyte (PE) behavior confined in charged nanoporous materials. Here, we propose an original approach using transverse streaming potential measurements (TSPMs), an efficient technique providing information on the electrical surface properties of nanoporous materials through the ζ-potential determination. We conduct TSPMs within the thin double-layer approximation on a model system composed of individual nanochannels, a nanoporous anodic aluminum oxide (AAO) membrane, filled with a well-known PE, sodium polystyrenesulfonate (NaPSS). We demonstrate that TSPMs can provide the AAO ζ-potential under different experimental conditions and monitor the PE penetration in AAO with positive or negative surface charge. On the positive surface, the PE irreversibly adsorbs, while it does not when the surface is negatively charged, indicating the electrostatic nature of the PE adsorption. In the context of experimental limitations to investigate PE behavior on concave surfaces, this study shows that the TSPM is suitable to extract quantitative information and can be exploited to gain an understanding of the PE adsorption and desorption in a confined medium.

3.
J Appl Crystallogr ; 52(Pt 4): 745-754, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31396027

ABSTRACT

Nanoporous anodic aluminium oxide (AAO) membranes are promising host systems for confinement of condensed matter. Characterizing their structure and composition is thus of primary importance for studying the behavior of confined objects. Here a novel methodology to extract quantitative information on the structure and composition of well defined AAO membranes by combining small-angle neutron scattering (SANS) measurements and scanning electron microscopy (SEM) imaging is reported. In particular, (i) information about the pore hexagonal arrangement is extracted from SEM analysis, (ii) the best SANS experimental conditions to perform reliable measurements are determined and (iii) a detailed fitting method is proposed, in which the probed length in the fitting model is a critical parameter related to the longitudinal pore ordering. Finally, to validate this strategy, it is applied to characterize AAOs prepared under different conditions and it is shown that the experimental SANS data can be fully reproduced by a core/shell model, indicating the existence of a contaminated shell. This original approach, based on a detailed and complete description of the SANS data, can be applied to a variety of confining media and will allow the further investigation of condensed matter under confinement.

4.
Nanoscale ; 11(5): 2148-2152, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30667446

ABSTRACT

Neutron reflectivity (NR) is a powerful technique to investigate the incorporation of nanomaterials (polymers, nanoparticles, etc) into multilayer porous systems. Here we propose an experimental approach combining NR and scanning electron microscopy (SEM) to successfully characterize duplex nanoporous anodic aluminum oxides (nAAO) and to extract quantitative information about the entering and adsorption of polyelectrolytes (PEs) in nanopores. Duplex nAAO are promising systems to study the influence of geometrical constriction, i.e. the reduction of pore diameters along the pore channel, on the confinement of condensed matters.

5.
Chemistry ; 24(64): 17125-17137, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30144185

ABSTRACT

The condensation of aldehydes and amines in water to give amphiphilic imines can lead to a particular autocatalytic behavior known as autopoiesis, in which the closed micellar structure made by the amphiphile at the mesoscale can accelerate the condensation of its constituents. Herein, through a combination of analytical tools, including diffusion ordered spectroscopy (DOSY) as well as light, neutron, and X-ray scattering techniques, the thermodynamic and kinetic parameters were probed at both the level of dynamic covalent imine bond formation and the level of the resulting micellar self-assemblies. It was found that the autopoietic behavior was the result of a combination of several parameters, including solubilization of hydrophobic building blocks, template effect at the core-shell interface, and growth/division cycles of the micellar objects.

6.
ACS Macro Lett ; 5(4): 523-527, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-35607227

ABSTRACT

Chain behavior has been determined in polymer nanocomposites (PNCs) comprised of well-dispersed 12 nm diameter silica nanoparticles (NPs) in poly(methyl methacrylate) (PMMA) matrices by Small-Angle Neutron Scattering (SANS) measurements under the Zero Average Contrast (ZAC) condition. In particular, we directly characterize the bound polymer layer surrounding the NPs, revealing the bound layer profile. The SANS spectra in the high-q region also show no significant change in the bulk polymer radius of gyration on the addition of the NPs. We thus suggest that the bulk polymer conformation in PNCs should generally be determined using the high q region of SANS data.

7.
ACS Macro Lett ; 5(10): 1095-1099, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-35658187

ABSTRACT

In this Letter we applied for the first time a small-angle neutron scattering (SANS) extrapolation method to study the influence of nanoparticles (NPs) on polymer chain conformation in polymer nanocomposites (PNCs). This new approach is based on a perfect NP matching thanks to a statistical hydrogenated (H)/ deuterated (D) polymer matrix in which a certain amount of labeled chain (H) is added. The extrapolation to zero H content gives the intrachain structure factor, S1(q), and the interchain correlations, S2(q), the latter not being accessible under the zero average contrast (ZAC) condition preferentially used in the previous studies. We validate the method on well-known silica/polystyrene (PS) PNCs and compare the results with our previous ZAC measurements. The analysis of both S1(q) and S2(q) shows (i) no significant modifications of the radius of gyration Rg of the chain and of the interchain interaction induced by the presence of NPs and more interestingly (ii) the existence of chain domains with lower densities included inside NP clusters as the result of excluded volume effects that create an extra scattering at low q. The extrapolation method unambiguously shows that the unexpected behavior observed at low q comes from the chains and not from the unmatched NPs.

8.
Phys Rev Lett ; 115(8): 085501, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26340192

ABSTRACT

Supramolecular self-assembly is a multiple length-scale and time-dependent process involving many coexisting components. Such complexity requires suitable strategies to extract quantitative dynamical and structural information on all involved species. Here, we detail an original light scattering method to study the kinetics of tailored triarylamine molecules capable of self-assembling in supramolecular highly conductive nanowires upon light exposure. These micrometric assemblies cause the emergence of intermittences in the scattered intensity and the construction of a predominant slow mode in the correlation function making separation between small-and large-size species impossible using conventional treatments. Our strategy is based on the time monitoring of intermittences and allows us to determine the fraction of nanowires as well as those of small critical nuclei and triarylamine building blocks as a function of time and light exposure, in good agreement with recent theoretical predictions.

9.
Nano Lett ; 15(8): 5465-71, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26192340

ABSTRACT

It is now well accepted that the addition of nanoparticles (NPs) can strongly affect the thermomechanical properties of the polymers into which they are incorporated. In the solid (glassy) state, previous work has implied that optimal mechanical properties are achieved when the NPs are well dispersed in the matrix and when there is strong interfacial binding between the grafted NPs and the polymer matrix. Here we provide strong evidence supporting the importance of intermolecular interactions through the use of NPs grafted with polymers that can hydrogen bond with the matrix, yielding to significant improvements in the measured mechanical properties. Our finding thus supports the previously implied central role of strong interfacial binding in optimizing the mechanical properties of polymer nanocomposites.

10.
ACS Nano ; 8(10): 10111-24, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25244290

ABSTRACT

By using a combination of experimental and theoretical tools, we elucidate unique physical characteristics of supramolecular triarylamine nanowires (STANWs), their packed structure, as well as the entire kinetics of the associated radical-controlled supramolecular polymerization process. AFM, small-angle X-ray scattering, and all-atomic computer modeling reveal the two-columnar "snowflake" internal structure of the fibers involving the π-stacking of triarylamines with alternating handedness. The polymerization process and the kinetics of triarylammonium radicals formation and decay are studied by UV-vis spectroscopy, nuclear magnetic resonance and electronic paramagnetic resonance. We fully describe these experimental data with theoretical models demonstrating that the supramolecular self-assembly starts by the production of radicals that are required for nucleation of double-columnar fibrils followed by their growth in double-strand filaments. We also elucidate nontrivial kinetics of this self-assembly process revealing sigmoid time dependency and complex self-replicating behavior. The hierarchical approach and other ideas proposed here provide a general tool to study kinetics in a large number of self-assembling fibrillar systems.

11.
Adv Mater ; 26(24): 4031-6, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24711123

ABSTRACT

A individual nanoparticle (NP) dispersion in polymer nanocomposites has been obtained through the adsorption of PSbP2VP block copolymer (BCP) at the NPs' surface in solution. The adsorbed block increases the minimum inter-NP distance, while the non-adsorbed block has favourable entropy of mixing with the matrix polymer with the same chemical structure. Physical adsorption of BCP provides a simple, robust means of organizing NPs in a chemically unfavourable polymer.

12.
ACS Macro Lett ; 2(5): 371-374, 2013 May 21.
Article in English | MEDLINE | ID: mdl-35581840

ABSTRACT

There has been considerable interest in characterizing the polymer layer that is effectively irreversibly bound to nanoparticles (NPs) because it is thought to underpin the unusual thermomechanical properties of polymer nanocomposites (PNC). We study PNCs formed by mixing silica nanoparticles (NPs) with poly-2-vinylpyridine (P2VP) and compare the bound layer thickness δ determined by three different methods. We show that the thickness obtained by thermogravimetric analysis (TGA) and assuming that the bound layer has a density corresponding to a dense melt clearly underestimates the real bound layer thickness. A more realistic extent of the bound layer is obtained by in situ measurements of the interaction pair potential between NPs in PNCs via analysis of TEM micrographs; we verify these estimates using Dynamic Light Scattering (DLS) in θ solvent. Our results confirm the existence of long-ranged interactions between NPs corresponding roughly in size to the radius of gyration of the bound chains.

13.
Angew Chem Int Ed Engl ; 51(50): 12504-8, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23081866

ABSTRACT

Pumping iron: Double-threaded rotaxanes can be linked to coordination units and polymerized in the presence of iron or zinc ions. pH modulation triggers cooperative contractions (or extensions) of the individual rotaxanes, thus resulting in an amplified motion of the muscle-like supramolecular chains with changes of their contour lengths of several micrometers (see picture).

14.
Nanoscale ; 4(21): 6748-51, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22996153

ABSTRACT

Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn(2+) ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.

15.
Phys Chem Chem Phys ; 14(16): 5718-28, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22422365

ABSTRACT

The structural and dynamical properties of dilute aqueous solutions of poly(ethylene glycol)-perylene diimides (PEG(n)-PDI) have been investigated by means of static and dynamic light scattering, TEM microscopy, and small-angle X-ray scattering experiments. The amphiphilic PEG(n)-PDI molecules first self-assemble into stable and compact primary stacks of a few units of planar PDI through hydrophobic and π-π interactions. These primary stacks subsequently arrange in large and globular aggregates of typically 100-250 nm via weak PEG chain interpenetration. Surprisingly, the scattered electric field autocorrelation function g((1))(q,t) measured by dynamic light scattering evolves over very long periods of times (several months) and up to a bimodal distribution. The fast relaxation mechanism is associated to the diffusion of free primary stacks, whereas the slower relaxation still indicates the presence of large self-assemblies. Kinetic experiments show that the large supramolecular aggregates slowly release the free primary stacks whose proportion increases with time. This dissociation depends on several parameters such as PEG side chain length, total concentration, and shaking.


Subject(s)
Imides/chemistry , Perylene/analogs & derivatives , Polyethylene Glycols/chemistry , Thermodynamics , Water/chemistry , Kinetics , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Particle Size , Perylene/chemistry , Solubility , Surface Properties
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031801, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230095

ABSTRACT

In this paper we present a direct measurement of stretched chain conformation in polymer nanocomposites in a large range of deformation using a specific contrast-matched small angle neutron scatttering (SANS) method. Whatever are the filler structure and the chain length the results show a clear identity of chain deformation in pure and reinforced polymer and offer more insight on the polymer chain contribution in the mechanical reinforcement. It suggests that glassy layer or glassy paths, recently proposed, should involve only a small fraction of chains. As a result, the remaining filler contribution appears strikingly constant with deformation as explained by continuous locking-unlocking rearrangement process of the particles.

17.
Langmuir ; 25(7): 3991-8, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19714825

ABSTRACT

We present here a study of the adsorption of asphaltenes on hydrophilic and hydrophobic solid surfaces by coupling measurements of adsorption isotherms on the macroscopic scale on silica powder with measurements of the structure of the adsorbed asphaltene layer on the microscopic scale obtained by neutron reflectivity on flat silicon wafers. Under good-solvent conditions, if adsorption isotherms reveal that the interaction potential between asphaltenes and the surface is slightly higher for the hydrophilic surface than for the hydrophobic one, then the mechanism of adsorption is similar in both cases because all samples exhibit the same local structure of the adsorbed asphaltene layer: it is a solvated monolayer with thickness of the same order of magnitude as the size of the asphaltene aggregates in the bulk. The surface excess, gamma, is thus always of the same order (approximately 3 mg/m2). The adsorption process induces a densification of the aggregates at the interface because the adsorbed monolayer is much less solvated than aggregates in bulk solution. When a bad solvent is progressively added, the asphaltene adsorbed layer keeps its monolayer structure as long as the bulk flocculation threshold is not reached. Above the threshold, the size of the asphaltene adsorbed layer grows and forms a multilayer structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...