Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 237(3): e13936, 2023 03.
Article in English | MEDLINE | ID: mdl-36645134

ABSTRACT

The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Animals , Circadian Rhythm/physiology , Feeding Behavior/physiology , Obesity , Circadian Clocks/physiology , Eating/physiology , Mammals
2.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
3.
Mol Metab ; 60: 101497, 2022 06.
Article in English | MEDLINE | ID: mdl-35413480

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. METHODS: RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. RESULTS: We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. CONCLUSIONS: Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health.


Subject(s)
Adipose Tissue, Brown , Angiopoietin-Like Protein 4/metabolism , Lipoprotein Lipase , Adipose Tissue, Brown/metabolism , Angiopoietins , Animals , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/metabolism , Triglycerides/metabolism
4.
Proc Natl Acad Sci U S A ; 119(10): e2200083119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238641

ABSTRACT

SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.


Subject(s)
ARNTL Transcription Factors/physiology , Circadian Clocks , Insulin Resistance , Non-alcoholic Fatty Liver Disease/etiology , ARNTL Transcription Factors/genetics , Animals , Diet, High-Fat , Gene Deletion , Gene Expression Regulation , Humans , Leptin/genetics , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics
5.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Article in English | MEDLINE | ID: mdl-34014371

ABSTRACT

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Subject(s)
Adipocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation/physiology , Glucocorticoids/pharmacology , Obesity/genetics , Transcription Factors/genetics , Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Adult , Aged , Animals , Cross-Sectional Studies , Female , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Real-Time Polymerase Chain Reaction , Signal Transduction , Young Adult
6.
Mol Cell ; 76(4): 531-545.e5, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31706703

ABSTRACT

The glucocorticoid receptor (GR) is a potent metabolic regulator and a major drug target. While GR is known to play integral roles in circadian biology, its rhythmic genomic actions have never been characterized. Here we mapped GR's chromatin occupancy in mouse livers throughout the day and night cycle. We show how GR partitions metabolic processes by time-dependent target gene regulation and controls circulating glucose and triglycerides differentially during feeding and fasting. Highlighting the dominant role GR plays in synchronizing circadian amplitudes, we find that the majority of oscillating genes are bound by and depend on GR. This rhythmic pattern is altered by high-fat diet in a ligand-independent manner. We find that the remodeling of oscillatory gene expression and postprandial GR binding results from a concomitant increase of STAT5 co-occupancy in obese mice. Altogether, our findings highlight GR's fundamental role in the rhythmic orchestration of hepatic metabolism.


Subject(s)
Chromatin/metabolism , Circadian Clocks , Circadian Rhythm , Diet, High-Fat , Dietary Fats/metabolism , Energy Metabolism , Liver/metabolism , Obesity/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Blood Glucose/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Dietary Fats/administration & dosage , Dietary Fats/blood , Disease Models, Animal , Energy Metabolism/genetics , Fasting/metabolism , Gene Expression Regulation , Glucocorticoids/metabolism , Gluconeogenesis , Ligands , Male , Mice, Inbred C57BL , Mice, Knockout , Obesity/blood , Obesity/genetics , PPAR alpha/genetics , PPAR alpha/metabolism , Postprandial Period , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Secretory Pathway , Signal Transduction , Time Factors , Transcription, Genetic , Triglycerides/blood
7.
Methods Mol Biol ; 1966: 39-70, 2019.
Article in English | MEDLINE | ID: mdl-31041738

ABSTRACT

Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-seq) is a powerful tool to map context-dependent genome-wide binding of nuclear hormone receptors and their coregulators. This information can provide important mechanistic insight into where, when and how DNA-protein interactions are linked to target gene regulation. Here we describe a simple, yet reliable ChIP-seq method, including nuclear isolation from frozen tissue samples, cross-linking DNA-protein complexes, chromatin shearing, immunoprecipitation, and purification of ChIP DNA. We also include a standard ChIP-seq data analysis pipeline to elaborate and analyze raw single-end or paired-end sequencing data, including quality control steps, peak calling, annotation, and motif enrichment.


Subject(s)
Chromatin Immunoprecipitation/methods , High-Throughput Nucleotide Sequencing/methods , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , DNA/metabolism , Humans , Sequence Analysis, DNA/methods
8.
Genes Dev ; 32(5-6): 347-358, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29572261

ABSTRACT

The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior.


Subject(s)
Chromatin/metabolism , Circadian Rhythm/genetics , Cryptochromes/genetics , Transcription, Genetic/genetics , Animals , CLOCK Proteins/genetics , Chromatin/genetics , Cryptochromes/metabolism , Enhancer Elements, Genetic/genetics , Kidney/physiology , Liver/physiology , Mice , Mice, Knockout , Promoter Regions, Genetic/physiology , Sequence Deletion/genetics
9.
Genome Res ; 28(2): 182-191, 2018 02.
Article in English | MEDLINE | ID: mdl-29254942

ABSTRACT

Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Enhancer Elements, Genetic/genetics , Transcription Factors/genetics , Animals , Chromatin/genetics , Gene Expression Regulation/genetics , Kidney/metabolism , Liver/metabolism , Mice , Organ Specificity/genetics , Promoter Regions, Genetic
10.
Sci Rep ; 6: 24631, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27097688

ABSTRACT

Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.


Subject(s)
Carrier Proteins/metabolism , Circadian Rhythm , Lipid Metabolism , Signal Transduction , Animals , Carrier Proteins/genetics , Circadian Clocks , Circadian Rhythm/genetics , Cluster Analysis , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation , Male , Metabolic Networks and Pathways , Mice , Mice, Knockout , Protein Processing, Post-Translational
11.
J Am Soc Nephrol ; 25(7): 1430-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24652800

ABSTRACT

The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.


Subject(s)
Blood Pressure/physiology , Circadian Clocks/physiology , Homeostasis/physiology , Water-Electrolyte Balance/physiology , ARNTL Transcription Factors/physiology , Animals , Male , Mice , Renin/physiology
12.
Proc Natl Acad Sci U S A ; 111(1): 167-72, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24344304

ABSTRACT

Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.


Subject(s)
Circadian Clocks , Gene Expression Regulation , Liver/metabolism , Plasma/metabolism , Proteome , Albumins/metabolism , Animals , Circadian Rhythm , Cryptochromes/genetics , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Theoretical , Protein Processing, Post-Translational , RNA, Messenger/metabolism , alpha 1-Antitrypsin/metabolism
13.
PLoS Biol ; 11(1): e1001455, 2013.
Article in English | MEDLINE | ID: mdl-23300384

ABSTRACT

Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Eukaryotic Initiation Factors/biosynthesis , RNA, Messenger/biosynthesis , Ribosomes/metabolism , ARNTL Transcription Factors/genetics , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Cryptochromes/genetics , Enzyme Activation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes/metabolism , Pol1 Transcription Initiation Complex Proteins/biosynthesis , Pol1 Transcription Initiation Complex Proteins/genetics , Protein Biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Ribosomal/biosynthesis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
Proc Natl Acad Sci U S A ; 108(12): 4794-9, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383142

ABSTRACT

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.


Subject(s)
Circadian Rhythm/physiology , Gene Expression Regulation/physiology , Lipid Metabolism/physiology , Liver/metabolism , PPAR alpha/biosynthesis , Transcription Factors/metabolism , Animals , Cholesterol/metabolism , Fatty Acids/metabolism , Genome-Wide Association Study , Glucose/metabolism , Leucine Zippers , Mice , Mice, Knockout , PPAR alpha/genetics , Palmitoyl-CoA Hydrolase/genetics , Palmitoyl-CoA Hydrolase/metabolism , Transcription Factors/genetics , Transcription, Genetic/physiology , Xenobiotics/pharmacokinetics , Xenobiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...