Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446635

ABSTRACT

Caffeic acid (CA) exhibits a myriad of biological activities including cardioprotective action, antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. On the other hand, CA presents low water solubility and poor bioavailability, which have limited its use for therapeutic applications. The objective of this study was to develop a nanohybrid of zinc basic salts (ZBS) and chitosan (Ch) containing CA (ZBS-CA/Ch) and evaluate its anti-edematogenic and antioxidant activity in dextran and carrageenan-induced paw edema model. The samples were obtained by coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and UV-visible spectroscopy. The release of caffeate anions from ZBS-CA and ZBS-CA/Ch is pH-dependent and is explained by a pseudo-second order kinetics model, with a linear correlation coefficient of R2 ≥ 0.99 at pH 4.8 and 7.4. The in vivo pharmacological assays showed excellent anti-edematogenic and antioxidant action of the ZBS-CA/Ch nanoparticle with slowly releases of caffeate anions in the tissue, leading to a prolongation of CA-induced anti-edematogenic and anti-inflammatory activities, as well as improving its inhibition or sequestration antioxidant action toward reactive species. Overall, this study highlighted the importance of ZBS-CA/Ch as an optimal drug carrier.


Subject(s)
Chitosan , Humans , Chitosan/chemistry , Delayed-Action Preparations/chemistry , Spectroscopy, Fourier Transform Infrared , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Edema/pathology , Zinc/chemistry
2.
Opt Express ; 31(10): 15316-15325, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157635

ABSTRACT

We report on the development of all-fiber stand-alone iodine-filled photonic microcells demonstrating record absorption contrast at room temperature. The microcell's fiber is made of inhibited coupling guiding hollow-core photonic crystal fibers. The fiber-core loading with iodine was undertaken at 10-1-10-2mbar vapor pressure using what, to the best of our knowledge, is a novel gas-manifold based on metallic vacuum parts with ceramic coated inner surfaces for corrosion resistance. The fiber is then sealed on the tips and mounted on FC/APC connectors for better integration with standard fiber components. The stand-alone microcells display Doppler lines with contrasts up to 73% in the 633 nm wavelength range, and an off-resonance insertion loss between 3 to 4 dB. Sub-Doppler spectroscopy based on saturable absorption has been carried out to resolve the hyperfine structure of the P(33)6-3 lines at room temperature with a full-width at half maximum of 24 MHz on the b4 component with the help of lock-in amplification. Also, we demonstrate distinguishable hyperfine components on the R(39)6-3 line at room temperature without any recourse to signal-to-noise ratio amplification techniques.

3.
Sci Rep ; 12(1): 8454, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589834

ABSTRACT

An optimized sol-gel protocol was carried out to produce an yttrium aluminum garnet (YAG) xerogel from aluminum alkoxide and an yttrium salt on a semi-pilot scale. This xerogel was successfully used without prior pyrolysis as a solid load with the aid of additives in the preparation of pastes. Thermal treatment of the green bodies, obtained by robocasting of the paste, led to cohesive single-phase YAG ceramics. Manufacturing ceramic pieces by additive methods will allow shaping complex forms, while the single step conversion/consolidation would simplify the technological process, reducing global energy costs. Since YAG possesses high strength and good creep behavior at high temperatures, these refractory pieces could replace the metal alloys used in turbine blades for deep space exploration. Structural, thermal and chemical characterizations were performed on xerogel powders, pastes, and YAG ceramics.

4.
Inorg Chem ; 58(22): 15175-15188, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31663336

ABSTRACT

In this work, the phase purity and size of zirconia nanocrystals samples were studied in terms of zirconium concentration, added water content, and subsequent use of a post solvothermal treatment. The progressive tetragonal-to-monoclinic transformation of zirconia sample was observed to be strongly related to the water content of the alcoholic medium. But more surprisingly, it has been shown that even under initially anhydrous conditions and for particle size below 5 nm, the phase purity of the samples was deteriorated by a side-reaction of alcohol dehydration catalyzed by the surface of the nanoparticles (NPs). Since the phase transformation is essentially driven by the water content of the reaction mixture, we have shown that it was possible to recover an excellent phase purity without the help of any usual dopants by adding a strong alkaline desiccating agent. Provided that a sufficient sodium to zirconium ratio was ensured, the formation of the monoclinic phase was not observed whatever the zirconium precursor concentration. The effectiveness of this cure was related to the ability of sodium metal to generate reactive alkoxide able to neutralize water and to catalyze an alternative sol-gel mechanism leading to the formation of the t-ZrO2 NPs.

5.
Sci Technol Adv Mater ; 18(1): 644-653, 2017.
Article in English | MEDLINE | ID: mdl-28970872

ABSTRACT

The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

6.
Acta Chim Slov ; 61(3): 530-41, 2014.
Article in English | MEDLINE | ID: mdl-25286208

ABSTRACT

In this study, we report on the acid-catalysed synthesis of La(9.33)Si(6)O(26) from lanthanum nitrate or acetate and silicon ethoxide (TEOS) in the ethanol solvent, upon the transition from liquid to amorphous and crystalline phases. The similarity of the Fourier transform infrared spectra of the lanthanum-salt solutions and lanthanum-silicon sols indicates that the lanthanum environment is not changed in the reaction of the La-salt with TEOS. In the nitric-acid catalysed synthesis, the hydrolysis reaction was almost instantaneous, as a consequence of a higher amount of water in this system, which contributed to a high level of chemical heterogeneity in the product. The acetic acid-based synthesis ensured a good mixing of the reagents at the nanometre level, which gave rise to the formation of the pure La(9.33)Si(6)O(26) powder upon heating at 900 °C, and single phase ceramics with 94 % relative density after sintering at 1400 °C for 3 h in air, which is 200 °C lower temperature then usually reported for the apatite material.

SELECTION OF CITATIONS
SEARCH DETAIL
...