Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 28(20): 29703-29713, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114863

ABSTRACT

We propose a simple structure for passive sky radiative cooling made of a surface-textured layer of silica on a silver substrate. Using electromagnetic simulations, we show that the optical properties of such structures are near-ideal, due to the large reflectivity of silver in the solar spectrum and the large emissivity of silica in the infrared. Surface texturation is key to obtain near-unity emissivity in the infrared. By using thin transparent layers sandwiched between silver layers at the bottom of the structures, resonant absorption can be obtained, leading to coloration while keeping acceptable radiative cooling power. Using multiple resonator increases the color palette that can be obtained.

2.
Phys Rev Lett ; 123(2): 025901, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386506

ABSTRACT

Based on the thermal hysteresis of a phase change material exchanging radiative heat with a phase invariable one, we propose a radiative thermal memristor characterized by a Lissajous curve between their exchanged heat flux and temperature difference periodically modulated in time. For a memristor with terminals of VO_{2} and a blackbody, it is shown that (i) the temperature variations of its memristance follow a closed loop determined by the thermal hysteresis width of VO_{2}, and (ii) the thermal memristance on-off ratio is determined by the contrast of VO_{2} emissivities for its insulating and metallic phases and is equal to 3.6. The analogy of the proposed memristor to its electrical counterpart makes it promising to lay the foundations of the thermal computing with photons.

3.
Sci Rep ; 9(1): 8728, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31217509

ABSTRACT

Hysteresis loops exhibited by the thermophysical properties of VO2 thin films deposited on either a sapphire or silicon substrate have been experimentally measured using a high frequency photothermal radiometry technique. This is achieved by directly measuring the thermal diffusivity and thermal effusivity of the VO2 films during their heating and cooling across their phase transitions, along with the film-substrate interface thermal boundary resistance. These thermal properties are then used to determine the thermal conductivity and volumetric heat capacity of the VO2 films. A 2.5 enhancement of the VO2 thermal conductivity is observed during the heating process, while its volumetric heat capacity does not show major changes. This sizeable thermal conductivity variation is used to model the operation of a conductive thermal diode, which exhibits a rectification factor about 30% for small temperature differences (≈70 °C) on its terminals. The obtained results grasp thus new insights on the control of heat currents.

4.
Opt Express ; 25(21): 25938-25950, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041256

ABSTRACT

Based on the ability of plane structures to simultaneously optimize the propagation, confinement, and energy of surface plasmon-polaritons or surface phonon-polaritons, we develop the polaritonic figure of merit Z = ßRΛ2/δ, where ßR, Λ and δ are the longitudinal wave vector, propagation length, and penetration depth, respectively. Explicit and analytical expressions of Z are derived for a single interface and a suspended thin film, as functions of the material permittivities and the film thickness. Higher Z are obtained for thinner films and smaller energy losses. The application of the obtained results for a SiC-air interface and a SiC thin film suspended in air shows that both structures are able to maximize the presence of polaritons at a frequency near to, but different than that at which the real part of the SiC permittivity exhibits a dip. Furthermore, using the temperature change of this dip, we show that the propagation length, confinement and energy of polaritons increases with its deepness, which provides an effective way to enhance the overall Z of polaritonic structures.

5.
Phys Rev E ; 95(2-1): 022128, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297864

ABSTRACT

We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.

6.
Phys Rev Lett ; 116(20): 200601, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258859

ABSTRACT

We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

7.
Opt Express ; 23(24): A1388-97, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698789

ABSTRACT

By means of fluctuational electrodynamics, we calculate radiative heat flux between two planar materials respectively made of SiC and SiO2. More specifically, we focus on a first (direct) situation where one of the two materials (for example SiC) is at ambient temperature whereas the second material is at a higher one, then we study a second (reverse) situation where the material temperatures are inverted. When the two fluxes corresponding to the two situations are different, the materials are said to exhibit thermal rectification, a property with potential applications in thermal regulation. Rectification variations with temperature and separation distance are reported here. Calculations are performed using material optical data experimentally determined by Fourier transform emission spectrometry of heated materials between ambient temperature (around 300 K) and 1480 K. It is shown that rectification is much more important in the near-field domain, i.e. at separation distances smaller than the thermal wavelength. In addition, we see that the larger is the temperature difference, the larger is rectification. Large rectification is finally interpreted due to a weakening of the SiC surface polariton when temperature increases, a weakening which affects much less SiO2 resonances.

8.
Opt Express ; 23(24): A1533-40, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698801

ABSTRACT

We review recent advances in the fundamental understanding and technological applications of radiative processes for energy harvesting, conversion, efficiency, and sustainability. State-of-the-art and remaining challenges are discussed, together with the latest developments outlined in the papers comprising this focus issue. The topics range from the fundamentals of the thermal emission manipulation in the far and near field, to applications in radiative cooling, thermophotovoltaics, thermal rectification, and novel approaches to photon detection and conversion.

9.
Phys Rev Lett ; 111(17): 174301, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24206493

ABSTRACT

The heat transport mediated by near-field interactions in networks of plasmonic nanostructures is shown to be analogous to a generalized random walk process. The existence of superdiffusive regimes is demonstrated both in linear ordered chains and in three-dimensional random networks by analyzing the asymptotic behavior of the corresponding probability distribution function. We show that the spread of heat in these networks is described by a type of Lévy flight. The presence of such anomalous heat-transport regimes in plasmonic networks opens the way to the design of a new generation of composite materials able to transport heat faster than the normal diffusion process in solids.

10.
Phys Rev Lett ; 110(14): 146103, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25167011

ABSTRACT

We report local spectra of the near-field thermal emission recorded by a Fourier transform infrared spectrometer, using a tungsten tip as a local scatterer coupling the near-field thermal emission to the far field. Spectra recorded on silicon carbide and silicon dioxide exhibit temporal coherence due to thermally excited surface waves. Finally, we evaluate the ability of this spectroscopy to probe the frequency dependence of the electromagnetic local density of states.

11.
Phys Rev Lett ; 107(11): 114301, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-22026672

ABSTRACT

In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale.

12.
Nature ; 444(7120): 740-3, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17151664

ABSTRACT

In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a 'thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

13.
Phys Rev Lett ; 94(8): 085901, 2005 Mar 04.
Article in English | MEDLINE | ID: mdl-15783904

ABSTRACT

We introduce a thermal conductance by using the fluctuation-dissipation theorem to analyze the heat transfer between two nanoparticles separated by a submicron distance. Using either a molecular dynamics technique or a model based on the Coulomb interaction between fluctuating dipoles, we derive the thermal conductance. Both models agree for distances larger than a few diameters. For separation distances smaller than the particle diameter, we find a transition regime characterized by a thermal conductance larger than the contact conductance.

14.
Nature ; 416(6876): 61-4, 2002 Mar 07.
Article in English | MEDLINE | ID: mdl-11882890

ABSTRACT

A thermal light-emitting source, such as a black body or the incandescent filament of a light bulb, is often presented as a typical example of an incoherent source and is in marked contrast to a laser. Whereas a laser is highly monochromatic and very directional, a thermal source has a broad spectrum and is usually quasi-isotropic. However, as is the case with many systems, different behaviour can be expected on a microscopic scale. It has been shown recently that the field emitted by a thermal source made of a polar material is enhanced by more than four orders of magnitude and is partially coherent at a distance of the order of 10 to 100nm. Here we demonstrate that by introducing a periodic microstructure into such a polar material (SiC) a thermal infrared source can be fabricated that is coherent over large distances (many wavelengths) and radiates in well defined directions. Narrow angular emission lobes similar to antenna lobes are observed and the emission spectra of the source depends on the observation angle--the so-called Wolf effect. The origin of the coherent emission lies in the diffraction of surface-phonon polaritons by the grating.

SELECTION OF CITATIONS
SEARCH DETAIL
...