Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 20(6): e1011285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885195

ABSTRACT

The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.


Subject(s)
Athletic Performance , Blood Pressure , Haplotypes , Horses/genetics , Animals , Humans , Blood Pressure/genetics , Athletic Performance/physiology , Haplotypes/genetics , Endothelin-3/genetics , Polymorphism, Single Nucleotide , Alleles , Male , Endothelial Cells/metabolism
2.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614000

ABSTRACT

Gene expression differences can assist in characterizing important underlying genetic mechanisms between different phenotypic traits. However, when population-dense tissues are studied, the signals from scarce populations are diluted. Therefore, appropriately choosing a sample collection method that enriches a particular type of effector cells might yield more specific results. To address this issue, we performed a polyA-selected RNA-seq experiment of domestic horse (Equus ferus caballus) plucked-hair samples and skin biopsies. Then, we layered the horse gene abundance results against cell type-specific marker genes generated from a scRNA-seq supported with spatial mapping of laboratory mouse (Mus musculus) skin to identify the captured populations. The hair-plucking and skin-biopsy sample-collection methods yielded comparable quality and quantity of RNA-seq results. Keratin-related genes, such as KRT84 and KRT75, were among the genes that showed higher abundance in plucked hairs, while genes involved in cellular processes and enzymatic activities, such as MGST1, had higher abundance in skin biopsies. We found an enrichment of hair-follicle keratinocytes in plucked hairs, but detected an enrichment of other populations, including epidermis keratinocytes, in skin biopsies. In mammalian models, biopsies are often the method of choice for a plethora of gene expression studies and to our knowledge, this is a novel study that compares the cell-type enrichment between the non-invasive hair-plucking and the invasive skin-biopsy sample-collection methods. Here, we show that the non-invasive and ethically uncontroversial plucked-hair method is recommended depending on the research question. In conclusion, our study will allow downstream -omics approaches to better understand integumentary conditions in both health and disease in horses as well as other mammals.


Subject(s)
Hair Follicle , Hair , Animals , Mice , Epidermis , Gene Expression , Hair Follicle/metabolism , Horses , Keratinocytes/metabolism
3.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853519

ABSTRACT

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Subject(s)
Gait , Horses/genetics , Quantitative Trait Loci , Animals , Gait/genetics , Genome-Wide Association Study , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...