Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Handb Clin Neurol ; 186: 83-99, 2022.
Article in English | MEDLINE | ID: mdl-35772901

ABSTRACT

While intra-operative neuro-physiologic assessment and monitoring improve the safety of patients, its use may also introduce new risks of injuries. This chapter looks at the electric safety of equipment and the potential hazards during the set-up of the monitoring. The physical and functional physiologic effects of electric shocks and stimulation currents, standards for safety limits, and conditions for tissue damage are described from basic physical principles. Considered are the electrode-tissue interface in relation to electrode dimensions and stimulation parameters as applied in various modalities of evoked sensory and motor potentials as to-date used in intra-operative monitoring, mapping of neuro-physiologic functions. A background is given on circumstances for electric tissue heating and heat drainage, thermal toxicity, protection against thermal injuries and side effects of unintended activation of neural and cardiac tissues, adverse effects of physiologic amplifiers from transcranial stimulation (TES) and excitotoxicity of direct cortical stimulation. Addressed are safety issues of TES and measures for prevention. Safety issues include bite and movement-induced injuries, seizures, and after discharges, interaction with implanted devices as cardiac pacemaker and deep brain stimulators. Further discussed are safety issues of equipment leakage currents, protection against electric shocks, and maintenance.


Subject(s)
Evoked Potentials, Motor , Monitoring, Intraoperative , Electric Stimulation/methods , Evoked Potentials, Motor/physiology , Humans , Iatrogenic Disease , Monitoring, Intraoperative/methods , Seizures
2.
Neurosurg Focus ; 35(5): E3, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24175863

ABSTRACT

OBJECT: Accurate placement of the leads is crucial in deep brain stimulation (DBS). To optimize the surgical positioning of the lead, a combination of anatomical targeting on MRI, electrophysiological mapping, and clinical testing is applied during the procedure. Electrophysiological mapping is usually done with microelectrode recording (MER), but the relatively undocumented semimicroelectrode recording (SMER) is a competing alternative. In this study the added value and safety of SMER for optimal lead insertion in the subthalamic nucleus (STN) in a consecutive cohort of patients with Parkinson disease (PD) was assessed. METHODS: Between 2001 and 2010, a consecutive single-center cohort of 46 patients with PD underwent DBS of the STN (85 lead insertions). After exclusion of 11 lead insertions for mostly technical reasons, 74 insertions were included for the assessment. Anatomical target localization was based on either 1.5-T MRI or fused 3-T MRI with CT, with reference to anterior commissure-posterior commissure coordinates. Electrophysiological mapping was performed with SMER. Intraoperative clinical testing was dominant in determining the final lead position. The target error was defined as the absolute distance between the anatomical or electrophysiological target and the final lead position. The effect of SMER on anatomical target error reduction and final target selection was analyzed. Also, the anatomical and electrophysiological target error was judged against the different imaging strategies. For safety evaluation, the adverse events related to all lead insertions were assessed. RESULTS: The use of SMER significantly reduced the anatomical target error from 1.7 (SD 1.6) mm to 0.8 (SD 1.3) mm (p < 0.0001). In particular, the anatomical target error based on 1.5-T MRI was significantly reduced by SMER, from 2.3 (SD 1.5) mm to 0.1 (SD 0.5) mm (p < 0.001). Anatomical target error reduction based on 3-T MRI fused with CT was not significantly influenced by SMER (p = 0.2), because the 3-T MRI-CT combination already significantly reduced the anatomical target error from 2.3 (SD 1.5) mm to 1.5 (SD 1.5) mm compared with 1.5-T MRI (p = 0.03). No symptomatic intracerebral hemorrhage was reported. Intracerebral infection was encountered in 1 patient following lead insertion. CONCLUSIONS: Semimicroelectrode recording has added value in targeting the STN in DBS for patients with PD based on 1.5-T MRI. The use of SMER does not significantly reduce the anatomical target error in procedures with fused 3-T MRI-CT studies and therefore might be omitted. With the absence of hemorrhagic complications, SMER-guided lead implantation should be considered a safe alternative to MER.


Subject(s)
Deep Brain Stimulation/methods , Electrodes, Implanted , Microelectrodes , Neuroimaging/methods , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Aged , Cohort Studies , Deep Brain Stimulation/instrumentation , Equipment Design , Female , Humans , Male , Medical Errors/prevention & control , Middle Aged , Parkinson Disease/surgery
3.
Stud Health Technol Inform ; 125: 292-7, 2007.
Article in English | MEDLINE | ID: mdl-17377288

ABSTRACT

Transcranial Electrical Stimulation (TES) is an important procedure in intraoperative motor monitoring. When neurosurgery is performed at certain difficult locations within the central nervous system (CNS), TES evaluates CNS functions during surgical manipulations to prevent post-operative complications. In TES, electrical stimulation is provided to the motor cortex through electrodes placed on the scalp, generating action potentials which travel through the nervous system. Despite widespread use, the sites of activation (AP generation) within the brain are not well understood. We have integrated computational and neurophysiologic models including a 3D volume conduction head model computed using the finite element method, a realistic corticospinal tract (CST) model, and a geometry-specific axon activation model for the CST to predict the sites of activation along the CST as a function of electrode placement and stimulation voltage, which have been verified by epidural recordings. We then develop a simple meshing and rendering algorithm to display the activating function along the CST. We have found that the AP generation appears closely linked to regions of high CST curvature. Our model and rendering algorithm provide a window to visualize the effects of TES in the brain.


Subject(s)
Computer Simulation , Deep Brain Stimulation , Neurosurgical Procedures , Pyramidal Tracts/physiology , Finite Element Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...