Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612422

ABSTRACT

As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.


Subject(s)
Phytic Acid , Xenobiotics , Humans , Animals , Molecular Docking Simulation , Cytochrome P-450 Enzyme System , RNA, Messenger , Mammals
2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232929

ABSTRACT

Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.


Subject(s)
Butyrates , Colitis, Ulcerative , Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Butyrates/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytochrome P-450 Enzyme System/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Metronidazole/pharmacology , Mice , Mice, Inbred C57BL
3.
Front Pharmacol ; 13: 936013, 2022.
Article in English | MEDLINE | ID: mdl-35928257

ABSTRACT

The development of inflammatory bowel disease (IBD) is associated with alterations in the gut microbiota. There is currently no universal treatment for this disease, thus emphasizing the importance of developing innovative therapeutic approaches. Gut microbiome-derived metabolite butyrate with its well-known anti-inflammatory effect in the gut is a promising candidate. Due to increased intestinal permeability during IBD, butyrate may also reach the liver and influence liver physiology, including hepatic drug metabolism. To get an insight into this reason, the aim of this study was set to clarify not only the protective effects of the sodium butyrate (SB) administration on colonic inflammation but also the effects of SB on hepatic drug metabolism in experimental colitis induced by dextran sodium sulfate (DSS) in mice. It has been shown here that the butyrate pre-treatment can alleviate gut inflammation and reduce the leakiness of colonic epithelium by restoration of the assembly of tight-junction protein Zonula occludens-1 (ZO-1) in mice with DSS-induced colitis. In this article, butyrate along with inflammation has also been shown to affect the expression and enzyme activity of selected cytochromes P450 (CYPs) in the liver of mice. In this respect, CYP3A enzymes may be very sensitive to gut microbiome-targeted interventions, as significant changes in CYP3A expression and activity in response to DSS-induced colitis and/or butyrate treatment have also been observed. With regard to medications used in IBD and microbiota-targeted therapeutic approaches, it is important to deepen our knowledge of the effect of gut inflammation, and therapeutic interventions were followed concerning the ability of the organism to metabolize drugs. This gut-liver axis, mediated through inflammation as well as microbiome-derived metabolites, may affect the response to IBD therapy.

4.
J Nutr Biochem ; 107: 109042, 2022 09.
Article in English | MEDLINE | ID: mdl-35533897

ABSTRACT

Modulation of gut microbiome composition seems to be a promising therapeutic strategy for a wide range of pathologic states. However, these microbiota-targeted interventions may affect production of microbial metabolites, circulating factors in the gut-liver axis influencing hepatic drug metabolism with possible clinical relevance. Butyrate, a short-chain fatty acid produced through microbial fermentation of dietary fibers in the colon, has well established anti-inflammatory role in the intestine, while the effect of butyrate on the liver is unknown. In this study, we have evaluated the effect of butyrate on hepatic AhR activity and AhR-regulated gene expression. We have showed that AhR and its target genes were upregulated by butyrate in dose-dependent manner in HepG2-C3 as well as in primary human hepatocytes. The involvement of AhR has been proved using specific AhR antagonists and siRNA-mediated AhR silencing. Experiments with AhR reporter cells have shown that butyrate regulates the expression of AhR target genes by modulating the AhR activity. Our results suggest also epigenetic action by butyrate on AhR and its repressor (AHRR) presumably through mechanisms based on HDAC inhibition in the liver. Our results demonstrate that butyrate may influence the drug-metabolizing ability of liver enzymes e.g., through the interaction with AhR-dependent pathways.


Subject(s)
Butyrates , Gastrointestinal Microbiome , Butyrates/metabolism , Butyrates/pharmacology , Colon/metabolism , Fatty Acids, Volatile/metabolism , Humans , Liver/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
5.
PLoS One ; 16(11): e0259643, 2021.
Article in English | MEDLINE | ID: mdl-34752478

ABSTRACT

Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.


Subject(s)
Gastrointestinal Microbiome , Animals , Liver , Metronidazole , Mice
6.
Front Pharmacol ; 11: 01303, 2020.
Article in English | MEDLINE | ID: mdl-33123003

ABSTRACT

Sexual differences and the composition/function of the gut microbiome are not considered the most important players in the drug metabolism field; however, from the recent data it is obvious that they may significantly affect the response of the patient to therapy. Here, we evaluated the effect of microbial colonization and sex differences on mRNA expression and the enzymatic activity of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice, lacking the intestinal flora, and control specific-pathogen-free (SPF) mice. We observed a significant increase in the expression of Cyp3a11 in female SPF mice compared to the male group. However, the sex differences were erased in GF mice, and the expression of Cyp3a11 was about the same in both sexes. We have also found higher Cyp2c38 gene expression in female mice compared to male mice in both the SPF and GF groups. Moreover, these changes were confirmed at the level of enzymatic activity, where the female mice exhibit higher levels of functional CYP2C than males in both groups. Interestingly, we observed the same trend as with CYP3A enzymes: a diminished difference between the sexes in GF mice. The presented data indicate that the mouse gut microbiome plays an important role in sustaining sexual dimorphism in terms of hepatic gene expression and metabolism.

7.
Sci Rep ; 10(1): 8529, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444678

ABSTRACT

The gut microbiota is involved in a number of different metabolic processes of the host organism, including the metabolism of xenobiotics. In our study, we focused on liver cytochromes P450 (CYPs), which can metabolize a wide range of exo- and endogenous molecules. We studied changes in mRNA expression and CYP enzyme activities, as well as the mRNA expression of transcription factors that have an important role in CYP expression, all in stressed germ-free (GF) and stressed specific-pathogen-free (SPF) mice. Besides the presence of the gut microbiota, we looked at the difference between acute and chronic stress. Our results show that stress has an impact on CYP mRNA expression, but it is mainly chronic stress that has a significant effect on enzyme activities along with the gut microbiome. In acutely stressed mice, we observed significant changes at the mRNA level, however, the corresponding enzyme activities were not influenced. Our study suggests an important role of the gut microbiota along with chronic psychosocial stress in the expression and activity of CYPs, which can potentially lead to less effective drug metabolism and, as a result, a harmful impact on the organism.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Gastrointestinal Microbiome/physiology , Liver/enzymology , RNA, Messenger/metabolism , Stress, Psychological , Xenobiotics/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic , Liver/microbiology , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Food Chem Toxicol ; 129: 382-390, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31059744

ABSTRACT

Vaccinium myrtillus L. (bilberry) fruit is a blue-colored berry with a high content of anthocyanins. These bioactive secondary metabolites are considered to play a major role in the health-promoting properties of bilberries. Our in vivo study was designed to assess the possible influence of bilberry extract on drug-metabolizing enzymes (DMEs). Rats were exposed to bilberry extract in drinking water at two concentrations (0.15 and 1.5 g/L). Selected DMEs were determined (mRNA expression and enzymatic activity) after 29 and 58 days in rat liver. In addition, a panel of antioxidant, physiological, biochemical and hematological parameters was studied; these parameters did not demonstrate any impact of bilberry extract on the health status of rats. A significant increase in activity was observed in cytochrome P450 (CYP) 2C11 (131% of control) and CYP2E1 (122% of control) after a 29-day administration, while the consumption of a higher concentration for a longer time led to a mild activity decrease. Slight changes were observed in some other DMEs, but they remained insignificant from a physiological perspective. According to our results, we conclude that the consumption of bilberries as a food supplement should not pose a risk of interacting with co-administered drugs based on their metabolism.


Subject(s)
Cytochrome P-450 Enzyme System/drug effects , Plant Extracts/pharmacology , Vaccinium myrtillus/chemistry , Animals , Antioxidants/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Male , Rats , Rats, Wistar
9.
Xenobiotica ; 49(11): 1296-1302, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30794062

ABSTRACT

1. The underlying microbial metabolic activity toward xenobiotics is among the least explored factors contributing to the inter-individual variability in drug response. 2. Here, we analyzed the effect of microbiota on a non-steroidal anti-inflammatory drug nabumetone. 3. First, we cultivated the drug with the selected gut commensal and probiotic bacteria under both aerobic and anaerobic conditions and analyzed its metabolites by high-performance liquid chromatography (HPLC) with UV detection. To analyze the effect of microbiota on nabumetone pharmacokinetics in vivo, we administered a single oral dose of nabumetone to rodents with intentionally altered gut microbiome - either rats treated for three days with the antibiotic imipenem or to germ-free mice. Plasma levels of its main active metabolite 6 methoxy-2-naphthylacetic acid (6-MNA) were analyzed at pre-specified time intervals using HPLC with UV/fluorescence detection. 4. We found that nabumetone is metabolized by bacteria to its non-active metabolites and that this effect is stronger under anaerobic conditions. Although in vivo, none of the pharmacokinetic parameters of 6-MNA was significantly altered, there was a clear trend towards an increase of the AUC, Cmax and t1/2 in rats with reduced microbiota and germ-free mice.


Subject(s)
Gastrointestinal Microbiome/drug effects , Nabumetone/pharmacokinetics , Anaerobiosis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Biological Availability , Gastrointestinal Microbiome/physiology , Imipenem/pharmacology , Male , Mice, Inbred BALB C , Nabumetone/metabolism , Naphthaleneacetic Acids/metabolism , Naphthaleneacetic Acids/pharmacokinetics , Rats, Wistar , Specific Pathogen-Free Organisms
10.
Article in English | MEDLINE | ID: mdl-27485182

ABSTRACT

BACKGROUND AND AIMS: The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. METHODS: Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. RESULTS AND CONCLUSIONS: Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.


Subject(s)
Gastrointestinal Microbiome/physiology , Pharmaceutical Preparations/metabolism , Acetylation , Bacteria/metabolism , Biological Availability , Cytochrome P-450 Enzyme System/metabolism , Humans , Hydrolysis , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Xenobiotics/metabolism
11.
Life Sci ; 133: 15-20, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25998026

ABSTRACT

UNLABELLED: Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. MAIN METHODS: An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. KEY FINDINGS: At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. SIGNIFICANCE: Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane).


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Intestines/enzymology , Liver/enzymology , Obesity/chemically induced , Obesity/metabolism , Sodium Glutamate , Animals , Blood Glucose/metabolism , Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/genetics , Eating , Humans , Insulin/blood , Insulin/metabolism , Intestinal Mucosa/metabolism , Leptin/blood , Leptin/metabolism , Lipid Metabolism , Lipids/blood , Liver/metabolism , Male , Mice , Obesity/blood , Obesity/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Up-Regulation
12.
J Pharmacol Sci ; 127(2): 190-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25727956

ABSTRACT

Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 µM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6ß-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed.


Subject(s)
Androstanols/pharmacology , Cytochromes/metabolism , Microsomes, Liver/enzymology , Neuromuscular Nondepolarizing Agents/pharmacology , Androstanols/metabolism , Binding Sites , Cells, Cultured , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19/physiology , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/physiology , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Diazepam/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Hepatocytes/metabolism , Humans , Rocuronium
SELECTION OF CITATIONS
SEARCH DETAIL
...