Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083532

ABSTRACT

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

2.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35145096

ABSTRACT

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

3.
Polymers (Basel) ; 13(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34503050

ABSTRACT

The hydrophilicity of fibers is directly related to the comfort of a fabric and represents one of the most important aspects of a textile. Therefore, polyester (PES) modification has focused on an increase in moisture content and a subsequent improvement of the user's experience. Based on the glycerol hygroscopic properties, the main objective has been the enhancement of the hydrophilicity of polyester by glycerol treatments. Furthermore, microwave irradiation and alkaline treatment have been applied, in order to increase glycerol adhesion. Treated PES samples were characterized by performing moisture content, negative ion, water diffusion and water vapor resistance analyses. The effect of different treatment conditions such as bath ratio (1/10 or 1/15), temperature (40, 60 or 100 °C), time (2 or 5 min) and microwave radiation intensity (300 or 500 W) was evaluated. The moisture content of treated PES results indicated that by decreasing the bath ratio and increasing the time and temperature the moisture gain can reach almost 14%, which can be easily related to increases in the weight of the fiber. The treatment with alkali was done and led to the highest moisture increase. Treatment with 500 W microwave irradiation led to higher glycerol retention after rinsing. Different experimental conditions were applied to the glycerol-treated PES fabrics, and a clear improvement in moisture content was obtained increasing the comfort. The results were compared with the ones obtained for cotton and wool, where the moisture is higher than non treated PES.

4.
ACS Appl Mater Interfaces ; 9(6): 5513-5521, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28117568

ABSTRACT

Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

5.
ACS Appl Mater Interfaces ; 2(6): 1700-6, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20524631

ABSTRACT

The potentials of low-pressure capacitively coupled RF oxygen and argon plasmas for the activation of polyester fibers surface that can enhance the deposition of colloidal TiO(2) nanoparticles were discussed. SEM and XPS analysis confirmed the plasma-induced morphological and chemical changes on the surface of polyester fibers. Oxygen and argon plasma pretreated polyester fabrics loaded with TiO(2) nanoparticles provided maximum reduction of Gram-negative bacteria E. coli and UV blocking. The self-cleaning effects tested on blueberry juice stains and photodegradation of methylene blue in aqueous solution proved excellent photocatalytic activity of TiO(2) nanoparticles deposited onto fiber surface. Although both plasmas significantly contributed to overall improvement of properties of such nanocomposite textile material, oxygen plasma treatment, in particular, enhanced the deposition of colloidal TiO(2) nanoparticles and thus ensured superior effects.


Subject(s)
Argon/chemistry , Nanoparticles/chemistry , Oxygen/chemistry , Polyesters/chemistry , Titanium/chemistry , Beverages , Blueberry Plants , Escherichia coli/metabolism , Gram-Negative Bacteria/metabolism , Microscopy, Electron, Scanning/methods , Radio Waves , Textiles , Ultraviolet Rays
6.
Rapid Commun Mass Spectrom ; 22(10): 1445-54, 2008 May.
Article in English | MEDLINE | ID: mdl-18398847

ABSTRACT

A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.


Subject(s)
Chromatography, High Pressure Liquid/methods , Industrial Waste/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Surface-Active Agents/chemistry , Textiles/analysis , Water Pollution, Chemical/analysis , Algorithms , Reproducibility of Results , Sensitivity and Specificity , Surface-Active Agents/analysis
7.
Sci Total Environ ; 399(1-3): 66-77, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18420255

ABSTRACT

This paper reports on a comprehensive reconnaissance of over seventy individual wastewater contaminants in the region of Western Balkan (WB; Bosnia and Herzegovina, Croatia and Serbia), including some prominent classes of emerging contaminants such as pharmaceuticals and personal care products, surfactants and their degradation products, plasticizers, pesticides, insect repellents, and flame retardants. All determinations were carried out using a multiresidue analytical approach, based on the application of gas chromatographic and liquid chromatographic techniques coupled to mass spectrometric detection. The results confirmed a widespread occurrence of the emerging contaminants in municipal wastewaters of the region. The most prominent contaminant classes, determined in municipal wastewaters, were those derived from aromatic surfactants, including linear alkylbenzene sulphonates (LAS) and alkylphenol polyethoxylates (APEO), with the concentrations in raw wastewater reaching into the mg/l range. All other contaminants were present in much lower concentrations, rarely exceeding few microg/l. The most abundant individual compounds belonged to several classes of pharmaceuticals (antimicrobials, analgesics and antiinflammatories, beta-blockers and lipid regulators) and personal care products (fragrances). Due to the rather poor wastewater management practices in WB countries, with less than 5% of all wastewaters being biologically treated, most of the contaminants present in wastewaters reach ambient waters and may represent a significant environmental concern.


Subject(s)
Environmental Monitoring , Sewage/analysis , Water Pollutants, Chemical/analysis , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Household Products/analysis , Humans , Insect Repellents/analysis , Pesticides/analysis , Pharmaceutical Preparations/analysis , Plasticizers/analysis , Risk Assessment , Sewage/chemistry , Surface-Active Agents/analysis , Time Factors
8.
Chemosphere ; 70(3): 525-30, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17707883

ABSTRACT

The aim of this study was to highlight the potential use of recycled wool-based nonwoven material for the removal of diesel fuel, crude, base, vegetable and motor oil from water. Sorption capacity of the material in water and in oil without water, oil retention, sorbent reusability and buoyancy in static and dynamic conditions were investigated. The results show high sorption capacity of recycled wool for different kinds of oil. This sorbent also exhibited excellent buoyancy after 24h of sorption as well as a good reusability since the decrease in sorption capacity did not exceed 50% of the initial value after five sorption cycles in oil without water.


Subject(s)
Conservation of Natural Resources , Petroleum , Plant Oils/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Wool/chemistry , Adsorption , Animals , Microscopy, Electron, Scanning , Polyesters/chemistry , Wool/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...