Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Infection ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856809

ABSTRACT

PURPOSE: The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. In the present study, we determined the mechanisms of antimicrobial resistance, virulence gene repertoire and genomic relatedness of CRAB isolates circulating in Serbian hospitals. METHODS: CRAB isolates were analyzed using whole-genome sequencing (WGS) for the presence of antimicrobial resistance-encoding genes, virulence factors-encoding genes, mobile genetic elements and genomic relatedness. Antimicrobial susceptibility testing was done by disk diffusion and broth microdilution methods. RESULTS: Eleven isolates exhibited an MDR resistance phenotype, while four of them were XDR. MIC90 for meropenem and imipenem were > 64 µg/mL and 32 µg/mL, respectively. While all CRABs harbored blaOXA-66 variant of blaOXA-51 gene, those assigned to STPas2, STPas636 and STPas492 had blaADC-73,blaADC-74 and blaADC-30 variants, respectively. The following acquired carbapenemases-encoding genes were found: blaOXA-72 (n = 12), blaOXA-23 (n = 3), and blaNDM-1(n = 5), and were mapped to defined mobile genetic elements. MLST analysis assigned the analyzed CRAB isolates to three Pasteur sequence types (STs): STPas2, STPas492, and STPas636. The Majority of strains belonged to International Clone II (ICII) and carried tested virulence-related genes liable for adherence, biofilm formation, iron uptake, heme biosynthesis, zinc utilization, serum resistance, stress adaptation, intracellular survival and toxin activity. CONCLUSION: WGS elucidated the resistance and virulence profiles of CRABs isolated from clinical samples in Serbian hospitals and genomic relatedness of CRAB isolates from Serbia and globally distributed CRABs.

2.
Int J Biol Macromol ; 264(Pt 1): 130421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423425

ABSTRACT

Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-ß-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.


Subject(s)
Pseudomonas aeruginosa , Stenotrophomonas maltophilia , Virulence , Stenotrophomonas maltophilia/genetics , Virulence Factors , Quorum Sensing , Acyl-Butyrolactones , Carboxylic Ester Hydrolases/pharmacology
3.
Antibiotics (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36978383

ABSTRACT

Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell. In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii that leads to colistin treatment failure. This review aims to present a critical assessment of relevant published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin resistance in A. baumannii with a detailed review of implicated mutations and the global distribution of colistin-resistant strains.

4.
Front Microbiol ; 14: 1094184, 2023.
Article in English | MEDLINE | ID: mdl-36825087

ABSTRACT

Since the WHO declared the COVID-19 pandemic in March 2020, the disease has spread rapidly leading to overload of the health system and many of the patients infected with SARS-CoV-2 needed to be admitted to the intensive care unit (ICU). Around 10% of patients with the severe manifestation of COVID-19 need noninvasive or invasive mechanical ventilation, which represent a risk factor for Acinetobacter baumannii superinfection. The 64 A. baumannii isolates were recovered from COVID-19 patients admitted to ICU at General Hospital "Dr Laza K. Lazarevic" Sabac, Serbia, during the period from December 2020 to February 2021. All patients required mechanical ventilation and mortality rate was 100%. The goal of this study was to evaluate antibiotic resistance profiles and virulence potential of A. baumannii isolates recovered from patients with severe form of COVID-19 who had a need for mechanical ventilation. All tested A. baumannii isolates (n = 64) were sensitive to colistin, while resistant to meropenem, imipenem, gentamicin, tobramycin, and levofloxacin according to the broth microdilution method and MDR phenotype was confirmed. In all tested isolates, representatives of international clone 2 (IC2) classified by multiplex PCR for clonal lineage identification, bla AmpC, bla OXA-51, and bla OXA-23 genes were present, as well as ISAba1 insertion sequence upstream of bla OXA-23. Clonal distribution of one dominant strain was found, but individual strains showed phenotypic differences in the level of antibiotic resistance, biofilm formation, and binding to mucin and motility. According to PFGE, four isolates were sequenced and antibiotic resistance genes as well as virulence factors genes were analyzed in these genomes. The results of this study represent the first report on virulence potential of MDR A. baumannii from hospital in Serbia.

5.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36695436

ABSTRACT

Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25-43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1-24, the truncation at position 31 is predicted to change the structure within aa 15-31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.


Subject(s)
Bacteriocins , Lactococcus lactis , Bacteriocins/genetics , Bacteriocins/pharmacology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Anti-Bacterial Agents/metabolism
6.
Comput Struct Biotechnol J ; 21: 574-585, 2023.
Article in English | MEDLINE | ID: mdl-36659926

ABSTRACT

This study aimed to investigate the prevalence and resistance mechanisms of colistin-resistant Acinetobacter baumannii (ColRAB) isolates in Serbia, assess their genetic relatedness to other circulating A. baumannii isolates in the neighbouring European countries, and analyse the global genomic epidemiology of ColRAB isolates. A total of 784 isolates of A. baumannii were recovered from hospitalised patients in Serbia between 2018 and 2021. The antimicrobial susceptibility testing was performed using disk diffusion and broth microdilution. All ColRAB isolates were subjected to DNA isolation and whole-genome sequencing (WGS). Overall, 3.94 % (n = 30) isolates were confirmed as ColRAB. Results of mutational and transcriptional analysis of genes associated with colistin resistance indicate the central role of the two-component regulating system, PmrAB, and increased expression of the pmrC gene in ColRAB. Most of the isolates (n = 29, 96.6 %) belonged to international clone II, with the most common sequence type being STPas2 (n = 23, 76.6 %). Based on the WGS analysis, ColRAB isolates belonging to the same ST isolated in various countries were grouped into the same clusters, indicating the global dissemination of several high-risk clonal lineages. Phylogenomic analysis of ColRAB isolates, together with all previously published A. baumannii genomes from South-Eastern European countries, showed that colistin resistance arose independently in several clonal lineages. Comparative genomic analysis revealed multiple genes with various roles (transcriptional regulation, transmembrane transport, outer membrane assembly, etc.), which might be associated with colistin resistance in A. baumannii. The obtained findings serve as the basis for further studies, contributing to a better understanding of colistin resistance mechanisms in A. baumannii.

7.
Folia Microbiol (Praha) ; 68(3): 431-440, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36567375

ABSTRACT

Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.


Subject(s)
Achromobacter denitrificans , Achromobacter , Cystic Fibrosis , Gram-Negative Bacterial Infections , Humans , Child , Trimethoprim, Sulfamethoxazole Drug Combination , Achromobacter denitrificans/genetics , Anti-Bacterial Agents/therapeutic use , Integrases/therapeutic use , Integrons/genetics , Serbia , Genomics , Microbial Sensitivity Tests
8.
PLoS One ; 17(9): e0273474, 2022.
Article in English | MEDLINE | ID: mdl-36074767

ABSTRACT

Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) is continually changing. Frequency of genotypes typical for community-associated MRSA (CA-MRSA) is increasing in hospitals, as well as resistance to antimicrobial agents. Moreover, different clones predominate in different geographic regions, and temporal shifts occur in the predominant clonal type. The aim of this study was to estimate the prevalence of MRSA, CA-MRSA and PVL-positive MRSA isolates from patients hospitalised in the Military Medical Academy (MMA) and from outpatients, and to perform genotyping of PVL-positive MRSA isolates. MRSA isolates were obtained by standard microbiological techniques. PVL-positive MRSA were detected by single PCR. Determination of SCCmec types in MRSA isolates was done using multiplex PCR and genotyping of PVL-positive MRSA by PFGE, MLST and spa typing. The prevalence of MRSA among S. aureus isolates from different clinical specimens was 43.4%. In outpatients the prevalence of MRSA was 3.2%. SCCmec types specific for CA-MRSA were found in 26% of MRSA isolates from hospitalised patients. In groups, hospitalised patients and outpatients, the prevalence of PVL-positive MRSA isolates was 4%, and all of them harboured SCCmec type V genetic element. PFGE revealed minor differences between four groups of PVL-positive MRSA isolates, but all of them belonged to ST152, and all except one were of the t355 spa type. High prevalence of MRSA and CA-MRSA in MMA, especially the presence of PVL-positive CA-MRSA, represent a serious health threat for patients. Genotype t355/ST152/SCCmec V is the dominant MRSA clone among PVL-positive CA-MRSA.


Subject(s)
Bacterial Toxins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents , Bacterial Toxins/genetics , Genotype , Humans , Leukocidins/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Serbia/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Tertiary Care Centers
9.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897798

ABSTRACT

Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.


Subject(s)
Bacterial Proteins , Pseudomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas/metabolism , Pseudomonas aeruginosa/metabolism , Regulon , Virulence/genetics
10.
Foodborne Pathog Dis ; 19(9): 630-636, 2022 09.
Article in English | MEDLINE | ID: mdl-35749151

ABSTRACT

Owing to the emerging resistance to antimicrobials in Salmonella Kentucky isolates around the globe, the genomic comparison of all the registered multidrug-resistant Salmonella Kentucky isolates in Serbia (five from humans, one from turkey flock, and one from meat) was done. Most of the isolates were isolated from patients returning from Egypt or Tunisia or originated from imported turkey flock and turkey meat. The comparative analysis of resistance and virulence genes was done. All isolates belonged to sequence type-ST198 and were resistant to ciprofloxacin (Cip). The resistance to Cip was mediated by target mutations of the gyrA and parC genes, which encode topoisomerase I and II, respectively. Multidrug-resistant phenotype to aminoglycosides, ß-lactam antibiotics, sulfonamides, and tetracyclines was detected in five isolates. However, none of the isolates was pan-resistant to antimicrobials. The number of single nucleotide polymorphisms between isolates varied from 8 to 43 and phylogenomics revealed the genetic proximity of the human isolate 10475/11 and the turkey meat isolate 5264/14, indicating a possible meat-to-human transfer. All isolates belonged to the main Salmonella Kentucky MDR lineage, carrying the Salmonella genomic island 1 (SGI1-K) subtype. The SGI1-K of Serbian isolates showed mosaicism attributed to rapid intraclonal evolution. Many virulence factors were detected in all the isolates, including SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-9, and C63PI. Although Salmonella Kentucky has rarely been isolated from humans, food, and animals in Serbia, further surveillance is needed to diminish the risk of the spreading of resistant clones and their meat-to-human transmission.


Subject(s)
Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Humans , Kentucky , Microbial Sensitivity Tests , Salmonella , Salmonella enterica/genetics , Serbia/epidemiology , Serogroup , Turkeys
11.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35337182

ABSTRACT

The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin's ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.

12.
Res Microbiol ; 173(1-2): 103885, 2022.
Article in English | MEDLINE | ID: mdl-34648877

ABSTRACT

The rapid and appropriate response of Pseudomonas spp. to environmental fluctuations has been enabled by numerous signal transduction regulatory systems. Regulatory systems in Pseudomonas aeruginosa are organized in a complex network which provides quick and fine-tuned cellular response through regulation of virulence and antibiotic resistance determinants production. Mobile integrons represent genetic elements included in the rapid dissemination of multiple antibiotic resistance determinants. The key factor of integron dynamics is enzyme integrase. So far, global regulators LexA, RpoS and PsrA have been recognized as regulators of the intI1 transcription. In this study, we discovered novel activator of the intI1 transcription, sensor kinase RclS, in Pseudomonas putida WCS358. This regulation is limited to stationary growth phase and appears to be indirect, at least through regulation of the rpoS expression. Sensor kinase RclS is a part of novel three-component system Rcl (Roc-like) together with two response regulators, RclR and RclA. RclS acted as a negative regulator of the rclA transcription, while the role in the rclR transcription regulation could not be defined. The RclSAR regulatory system seems to be a part of complex intI1 regulatory network which includes major stress response (SOS and RpoS) regulons.


Subject(s)
Gene Expression Regulation, Bacterial , Sigma Factor , Bacterial Proteins/metabolism , Pseudomonas/genetics , Regulon , Sigma Factor/genetics , Sigma Factor/metabolism
13.
Antonie Van Leeuwenhoek ; 114(10): 1595-1607, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34319449

ABSTRACT

Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein α-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein α-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.


Subject(s)
Bacteriocins , Listeria monocytogenes , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Multigene Family , Streptococcus agalactiae/genetics
14.
Vet Res Commun ; 45(4): 199-209, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34142260

ABSTRACT

Despite common resistance to antimicrobials in Escherichia coli isolates from farm animals in Serbia, no data are currently accessible on its occurrence in E. coli isolated from gulls. Therefore, 67 cloacal swabs and 70 fecal samples from black-headed gulls were investigated for the presence of antibiotic-resistant E. coli isolates. Ninety-nine isolates were obtained during the study. Resistotyping and resistance gene typing has shown that 44 isolates harbor resistance to one or more antibiotics. Multidrug resistance was detected in 24 E. coli isolates. Ten isolates were resistant to extended-spectrum cephalosporin antibiotics and were studied in detail including virulence gene typing, phylogenetic and multilocus sequence typing, and mating. These ten isolates belonged to phylogenetic groups B2 (five isolates), D (four isolates) and B1 (one isolate). Five different sequence types (ST38, ST2307, ST224, ST162 and ST34) were detected in E. coli isolates with AmpC phenotype and genotype. One isolate carried the Inc I2/FIB replicon type plasmid with the blaCTX-M-1 gene. Nine isolates had blaCMY-2 genes, which were detected on conjugative plasmids in seven isolates. The virulence genes hly, iroN, iss, ompT and cvaC were detected in one transconjugant. Ten isolates were found to be resistant to ciprofloxacin, whose MIC ranged from 4 to 32 mg/L. Genotyping revealed single or double mutations in the quinolone resistance determining region (QRDR) of the gyrA or gyrA, parC and parE genes, respectively. So, Black-headed gulls from Serbia may be colonized by multidrug-resistant E. coli, some of which are resistant to critically important antibiotics in medicine.


Subject(s)
Charadriiformes/microbiology , Drug Resistance, Microbial , Escherichia coli/drug effects , Animals , Drug Resistance, Multiple, Bacterial , Serbia
15.
Int J Food Microbiol ; 337: 108935, 2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33152568

ABSTRACT

Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis bv. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid pS74 is EPS production, while plasmid pS127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid pS127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.


Subject(s)
Bacteriocin Plasmids/genetics , Bacteriocins/genetics , Biotechnology , Lactococcus lactis/genetics , Industrial Microbiology
16.
J Biosci Bioeng ; 131(3): 234-240, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33189544

ABSTRACT

Trypsin is a serine protease with important applications such as protein sequencing and tissue dissociation. Preserving protein structure and its activity during freeze-thawing and prolonging its shelf life is one of the most interesting tasks in biochemistry. In the present study, trypsin cryoprotection was achieved by altering buffer composition. Sodium phosphate buffer at pH 8.0 led to pH shift-induced destabilization of trypsin and formation of a molten globule, followed by significant activity loss (about 70%). Potassium phosphate and ammonium bicarbonate buffers at pH 8.0 were used with up to 90% activity recovery rate after 7 freeze-thaw cycles. The addition of non-ionic surfactants Tween 20 and Tween 80 led to up to 99% activity recovery rate. Amide I region changes, corresponding to specific secondary structures in the Fourier transform infrared (FTIR) spectrum, were modest in the case of Tween 20 and Tween 80. On the other hand, the addition of Triton X-100 led to the destabilization of α-helicoidal segments of trypsin structure after 7 freeze-thaw cycles but also increased protein substrate availability.


Subject(s)
Freezing , Surface-Active Agents/pharmacology , Trypsin/metabolism , Octoxynol/pharmacology , Phosphates/pharmacology , Potassium Compounds/pharmacology , Surface-Active Agents/chemistry
17.
Microb Drug Resist ; 27(3): 328-336, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32762604

ABSTRACT

Although the molecular mechanisms of carbapenem resistance of environmental isolates of Acinetobacter baumannii are well described, data on the mechanisms of colistin resistance are scarce. In this study, we report the molecular mechanisms of colistin resistance in environmental isolates of A. baumannii. Seven clinically relevant isolates of A. baumannii belonging to ST-2Pasteur were recovered from hospital wastewater and wastewater treatment plant. The phenotypic resistance to colistin was confirmed by broth microdilution with minimum inhibitory concentration values ranging from 20 to 160 mg/L. Colistin sulfate and colistimethate sodium showed bactericidal activity against two colistin-heteroresistant isolates in vitro, but substantially recovery of population was observed after prolonged incubation. In silico genome analysis revealed nucleotide variations resulting in amino acid changes in LpxC (N286D), LpxD (E117K), PmrB (A138T, R263S, L267W, Q309P, and A444V), and EptA (F166L, I228V, R348K, A370S, and K531T). According to reverse transcription quantitative PCR, all isolates had increased levels of eptA mRNA and decreased levels of lpxA and lpxD mRNA. Isolates expressed low hydrophobicity, biofilm, and pellicle formation, but showed excellent survival in river water during 50 days of monitoring. Colistin- and pandrug-resistant A. baumannii disseminated in the environment could represent the source for the occurrence of serious community-acquired infections.


Subject(s)
Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Biofilms , Croatia , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Phenotype , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Water Microbiology
18.
Antibiotics (Basel) ; 9(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321688

ABSTRACT

The antimicrobial susceptibility testing was conducted on 174 single isolates from poultry farms in Serbia and it was determined that seven Salmonella spp. were multidrug resistant. Sixteen serotypes were detected, but only serotype Infantis confirmed reduced susceptibility to colistin. Seven colistin resistant Salmonella Infantis were studied in detail using the WGS approach. Three sequence types were identified corresponding to different epizootiology region. The isolate from the Province of Vojvodina 3842 and isolates from Jagodina (92 and 821) are represented by the sequence type ST413 and ST11, respectively. Four isolates from Kraljevo are ST32, a common S. Infantis sequence type in humans, poultry and food. The fosfomycin resistance gene fosA7 in isolate 3842 and the vgaA gene in isolate 8418/2948 encoding resistance to pleuromutilins were reported for the first time in serovar Infantis. The changes in relative expression of the phoP/Q, mgrB and pmrA/B genes were detected. Single nucleotide polymorphisms of the pmrB gene, including transitions Val164Gly or Val164Met, and Arg92Pro are described. Analyses of quinolone resistance determining region revealed substitutions Ser83Tyr in GyrA protein and Thr57Ser and Ser80Arg in ParC protein. Based on WGS data, there are two major clusters among analyzed Salmonella Infantis isolates from central Serbia.

19.
Microb Pathog ; 149: 104561, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33049333

ABSTRACT

Burkholderia cepacia is well known as the causative agent of infections in humans where often shares niche with other pathogens, like Pseudomonas aeruginosa. Clinical isolate Burkholderia sp. BCC4135 was selected due to its strong quorum quenching (QQ) activity. Whole genome sequencing unveiled this isolate as B. cepacia with unique sequence type ST1485 and a myriad of genes belonging to resistome and virulome. Two QQ lactonases YtnP and Y2-aiiA originated from B. cepacia BCC4135 were cloned, expressed, and functionally characterized. They were active against a broad substrate spectrum of the N-acyl-homoserine lactones (AHLs). The YtnP lactonase was inactive, while Y2-aiiA was active against N-tetradecanoyl-dl-homoserine lactone (C14-HSL) which could imply the difference in their biological roles from the aspect of its quorum sensing (QS) autoregulation and interference with the QS systems of bacteria residing within the same niche. Both YtnP and Y2-aiiA were able to attenuate virulence potential of P. aeruginosa MMA83 clinical isolate declining its biofilm formation and virulence factors production. B. cepacia BCC4135 lactonases interfered with the las, rhl, and even pqs QS circuit of P. aeruginosa MMA83 transcription and the effect of combined enzymes was even more prominent. B. cepacia BCC4135 also employs the CepI/R QS system for governing its own virulence traits and possibly self-regulates the QQ/QS network through the different expression and activity of YtnP and/or Y2-aiiA. Our findings pointed out that BCC4135 lactonases could be exploited as an effective antivirulence drugs against P. aeruginosa and gave us a new insight into B. cepacia QQ/QS machinery.


Subject(s)
Burkholderia cepacia , Quorum Sensing , Acyl-Butyrolactones , Bacterial Proteins/genetics , Humans , Pseudomonas aeruginosa/genetics , Virulence
20.
Int J Food Microbiol ; 334: 108851, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-32911158

ABSTRACT

Numerous applications of proteolytic enzymes include dissociation of fermented meat products for the enumeration of `foodborne pathogenic bacteria. The use of trypsin for this cause is abandoned due to the high concentration of the enzyme affecting released bacteria. Papain, as a suggested replacement, and fig latex preparation with high extent of papain-like enzymes have the potential to be applied for bacteria enumeration. Both enzymatic preparations, originating from papaya and fig, showed a broader range of substrate specificities including gelatinolytic activity, especially prominent in the case of ficin and attributed to both, cysteine protease ficin and serine protease by the analysis of 2D zymography with specific inhibitors. The activity towards native collagen, mild in the case of papain, and extensive in the case of fig latex was proved by structural analysis of digested collagen by infrared spectroscopy. Further exploration of their potential for dissociation of fermented meat products showed that both papain and fig latex enzymes are stable in the presence of detergents Tween 20 and Triton X-100 and effective in the enumeration of Listeria monocytogenes. Gelatenolytic activity, and at least partial collagenolytic activity and stability in procedure conditions make papaya and fig latex proteases potent for this application in significantly lower concentrations than previously used enzymes. As a mixture of proteolytic enzymes with divergent characteristics, fig latex preparation shows higher efficiency in Listeria monocytogenes release than papain, conserved even in the presence of stronger non-ionic detergent Triton X-100.


Subject(s)
Ficus/enzymology , Food Microbiology/methods , Latex/metabolism , Listeria monocytogenes/isolation & purification , Papain/metabolism , Carica/enzymology , Collagen/metabolism , Colony Count, Microbial , Ficain/chemistry , Ficain/metabolism , Latex/chemistry , Meat Products/microbiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...