Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Sustain Chem Eng ; 12(26): 9882-9896, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966240

ABSTRACT

Ammonia is a promising alternative hydrogen carrier that can be utilized for the solid-state reduction of iron oxides for sustainable ironmaking due to its easy transportation and high energy density. The main challenge for its utilization on an industrial scale is to understand the reaction kinetics under different process conditions and the associated nitrogen incorporation in the reduced material that originates from ammonia decomposition. In this work, the effect of temperature on the reduction efficiency and nitride formation is investigated through phase, local chemistry, and gas evolution analysis. The effects of inherent reactions and diffusion on phase formation and chemistry evolution are discussed in relation to the reduction temperature. The work also discusses nitrogen incorporation into the material through both spontaneous and in-process nitriding, which fundamentally affects the structure and chemistry of the reduced material. Finally, the effect of nitrogen incorporation on the reoxidation tendency of the ammonia-based reduced material is investigated and compared with that of the hydrogen-based reduced counterpart. The results provide a fundamental understanding of the reduction and nitriding for iron oxides exposed to ammonia at temperatures from 500 to 800 °C, serving as a basis for exploitation and upscaling of ammonia-based direct reduction for future green steel production.

2.
Nature ; 625(7996): 703-709, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38267679

ABSTRACT

Red mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking.

3.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048932

ABSTRACT

Stainless steels are important in various industries due to their unique properties and durable life cycle. However, with increasing demands for prolonged life cycles, better mechanical properties, and improved residual stresses, new treatment techniques, such as deep cryogenic treatment (DCT), are on the rise to further push the improvement in stainless steels. This study focuses on the effect of DCT on austenitic stainless steel AISI 304L, while also considering the influence of solution annealing temperature on DCT effectiveness. Both aspects are assessed through the research of microstructure, selected mechanical properties (hardness, fracture and impact toughness, compressive and tensile strength, strain-hardening exponent, and fatigue resistance), and residual stresses by comparing the DCT state with conventionally treated counterparts. The results indicate the complex interdependency of investigated microstructural characteristics and residual stress states, which is the main reason for induced changes in mechanical properties. The results show both the significant and insignificant effects of DCT on individual properties of AISI 304L. Overall, solution annealing at a higher temperature (1080 °C) showed more prominent results in combination with DCT, which can be utilized for different manufacturing procedures of austenitic stainless steels for various applications.

4.
Adv Sci (Weinh) ; 10(16): e2300111, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36995040

ABSTRACT

Iron making is the biggest single cause of global warming. The reduction of iron ores with carbon generates about 7% of the global carbon dioxide emissions to produce ≈1.85 billion tons of steel per year. This dramatic scenario fuels efforts to re-invent this sector by using renewable and carbon-free reductants and electricity. Here, the authors show how to make sustainable steel by reducing solid iron oxides with hydrogen released from ammonia. Ammonia is an annually 180 million ton traded chemical energy carrier, with established transcontinental logistics and low liquefaction costs. It can be synthesized with green hydrogen and release hydrogen again through the reduction reaction. This advantage connects it with green iron making, for replacing fossil reductants. the authors show that ammonia-based reduction of iron oxide proceeds through an autocatalytic reaction, is kinetically as effective as hydrogen-based direct reduction, yields the same metallization, and can be industrially realized with existing technologies. The produced iron/iron nitride mixture can be subsequently melted in an electric arc furnace (or co-charged into a converter) to adjust the chemical composition to the target steel grades. A novel approach is thus presented to deploying intermittent renewable energy, mediated by green ammonia, for a disruptive technology transition toward sustainable iron making.

6.
Materials (Basel) ; 15(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35407904

ABSTRACT

Spontaneous metallic Pb whisker formation from Pb and Bi containing Al-alloy's surfaces is a newly discovered phenomenon. The whiskers display unique formations, growth and morphology, which give the opportunity to be applied for specialized sensor and electronics applications. Within this work, the impact of environmental conditions (gas composition and moisture) is investigated and correlated with the modification of whisker evolution and growth dynamics. Furthermore, the residual stress state of the aluminum matrix using deep cryogenic treatment is modified and used to further increase whisker nucleation and growth by up to three- and seven-fold, respectively, supported by quantitative results. The results of this paper indicate the possibility to manipulate the whisker not only in terms of their kinetics but also their morphology (optimal conditions are 20% O2 and 35% humidity). Such features allow the tailoring of the whisker structure and surface to volume ratio, which can be optimized for different applications. Finally, this research provides new insight into the growth dynamics of the whiskers through in situ and ex situ measurements, providing further evidence of the complex nucleation and growth mechanisms that dictate the spontaneous growth of Pb whiskers from Al-alloy 6026 surfaces with growth velocities up to 1.15 µm/s.

7.
Materials (Basel) ; 14(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34947156

ABSTRACT

New approaches to improving wear resistance with an affordable and noncomplex technology, such as deep cryogenic treatment, (DCT0), are receiving attention. The aim of this study is to investigate the effect of DCT on the friction and wear performance of high-speed steels. AISI M2, AISI M3:2 and AISI M35 were heat-treated under different conditions, and then investigated under dry sliding conditions. Tribological testing involved different contact conditions, prevailing wear mechanisms and loading conditions. The DCT effect on sliding wear resistance depends on HSS steel grade, as well as contact conditions and wear mode, whereas it improves the dynamic impact of the wear and galling resistance.

8.
Materials (Basel) ; 14(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34771881

ABSTRACT

The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCT's influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steels' surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCT's influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels.

9.
Nanomaterials (Basel) ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34361228

ABSTRACT

The elucidation of spontaneous growth of metal whiskers from metal surfaces is still ongoing, with the mainstream research conducted on Sn whiskers. This work reports on the discovery of Pb whisker growth from Bi-Mg-Pb solid pools found in common machinable aluminum alloy. The whiskers and hillocks display unique morphologies and complex growth that have not been documented beforehand. In contrast to typical understanding of whisker growth, the presented Pb whiskers show a clear nanocrystalline induced growth mechanism, which is a novel concept. Furthermore, the investigated whiskers are also found to be completely composed of nanocrystals throughout their entire length. The performed research gives new insight into nucleation and growth of metal whiskers, which raises new theoretical questions and challenges current theories of spontaneous metal whisker growth. Additionally, this work provides the first microscopic confirmation of recrystallization growth theory of whiskers that relates to oriented attachment of nanocrystals formed within an amorphous metallic matrix. The impact of mechanical stress, generated through Bi oxidation within the pools, is theoretically discussed with relation to the observed whisker and hillock growth. The newly discovered nanocrystalline growth provides a new step towards understanding spontaneous metal whisker growth and possibility of developing nanostructures for potential usage in sensing and electronics applications.

10.
Nano Lett ; 19(12): 8716-8723, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31664840

ABSTRACT

Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. Mn4N thin films grown epitaxially on SrTiO3 substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale. Moreover, domain walls can be moved at record speeds by spin-polarized currents, in absence of spin-orbit torques. This can be explained by the large efficiency of the adiabatic spin transfer torque, due to the conjunction of a reduced magnetization and a large spin polarization. Finally, we show that the application of gate voltages through the SrTiO3 substrates allows modulating the Mn4N coercive field with a large efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...