Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Front Nutr ; 11: 1288748, 2024.
Article in English | MEDLINE | ID: mdl-38385014

ABSTRACT

Introduction: The current study investigated the value of urine selenium (Se) concentration as a biomarker of population Se status in rural sub-Saharan Africa. Method: Urine and plasma Se concentrations were measured among children aged 6-59 months (n = 608) and women of reproductive age (WRA, n = 781) living in rural Zimbabwe (Murehwa, Shamva, and Mutasa districts) and participating in a pilot national micronutrient survey. Selenium concentrations were measured by inductively coupled plasma-mass spectrometry (ICP-MS), and urine concentrations were corrected for hydration status. Results: The median (Q1, Q3) urine Se concentrations were 8.4 µg/L (5.3, 13.5) and 10.5 µg/L (6.5, 15.2) in children and WRA, respectively. There was moderate evidence for a relationship between urine Se concentration and plasma Se concentration in children (p = 0.0236) and WRA (p = < 0.0001), but the relationship had poor predictive value. Using previously defined thresholds for optimal activity of iodothyronine deiodinase (IDI), there was an association between deficiency when indicated by plasma Se concentrations and urine Se concentrations among WRA, but not among children. Discussion: Urine Se concentration poorly predicted plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status in this context. Further research is warranted at wider spatial scales to determine the value of urine Se as a biomarker when there is greater heterogeneity in Se exposure.

2.
Sci Rep ; 14(1): 460, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172143

ABSTRACT

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Subject(s)
Eleusine , Selenium , Humans , Eleusine/genetics , Ethiopia , Nutritive Value , Oxalates , Phytic Acid/analysis , Selenium/analysis , Tannins/analysis
3.
Front Nutr ; 10: 1158156, 2023.
Article in English | MEDLINE | ID: mdl-37941768

ABSTRACT

Background: Zinc biofortified wheat may be a sustainable strategy to increase zinc intake in areas where fortification and dietary diversification are not feasible or are limited by household purchasing power. This convergent mixed methods study aimed to explore the farmers' and millers' experiences and attitudes towards the production and processing of zinc biofortified wheat in Pakistan. Methods: A telephone survey was conducted with farmers (n = 418) who were provided with Zincol-2016 biofortified wheat seed for the 2019-2020 growing season, as part of a wheat grain micronutrient mapping study across Punjab Province. The survey explored the farmers' experiences of growing Zincol-2016 and whether they opted to grow it again in the subsequent season. Semi-structured focus group discussions were undertaken in a separate group of farmers in Khyber Pakhtunkhwa (KP) province (n = 12) who grew Zincol-2016 for the BiZiFED2 RCT. Millers were also interviewed in KP, both those who had processed Zincol-2016 for the trial (n = 12) and those who had no experience of processing biofortified wheat (n = 12). Survey data were analyzed using descriptive statistics and transcripts of focus groups were analyzed using thematic analysis. Results: Nearly half of farmers who responded to the survey (47%) re-cultivated Zincol-2016 in the following season. The drivers for Zincol-2016 re-cultivation were seed availability (100%), grain yield and growth resistance (98%), quality of the flour from the previous harvest (97%) and nutritional benefit (94.5%). Discussions with farmers suggested that the main motivators for potential scale-up of biofortified wheat were the perceived quality of the grain, wheat, and flour. Millers saw it as an opportunity to expand their business. Farmers and millers valued the health benefits of the wheat. Challenges for scale-up include the need of additional support to produce it, unfamiliarity with the biofortification process, production costs, and external threats to the supply chain. Conclusion: Farmers and millers showed a strong implicit preference for Zincol-2016 over alternative varieties. Crop performance and product yield were the most cited motivators for growing Zincol-2016. Farmers and millers are willing to produce and process biofortified wheat if financial and educational support is provided.

4.
Front Nutr ; 10: 1250002, 2023.
Article in English | MEDLINE | ID: mdl-37908299

ABSTRACT

Introduction: There is spatial variability of selenium (Se) in soil and crops in Ethiopia. We assessed the Se content of food items, breast milk, and urine among infants in Ethiopia from two areas with contrasting Se concentrations in soils. Methods: Dietary Se intakes among children (6-23 months) were evaluated using a weighed food record on two non-consecutive days. Also, spot urine samples from children and breast milk samples from their mothers were collected to determine Se concentration. Selenium concentrations in the samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). Results: Injera (prepared from teff and mixtures of other cereals) with a legume-based stew were the most frequently consumed foods by the children in both areas, followed by pasta. Overall, the Se concentration (mean ± SD) of food items, breast milk (12.2 ± 3.9 µg/L vs. 3.39 ± 1.5 µg/L), and urine samples (22.5 ± 11.5 µg/L vs. 3.0 ± 1.9 µg/L) from East Amhara were significantly higher than the corresponding samples from West Amhara (p < 0.001). The total Se intakes by the study children from East Amhara and West Amhara were 30.2 [IQ 25%, 14.2; IQ 75%, 54.1] and 7.4 [IQR 25%, 4.2; IQ 75%, 10.6] µg day-1, respectively; 31.5% of children from East Amhara and 92% of children from West Amhara were at risk of inadequate Se intakes. Urinary Se excretion accounted for 53 and 39% of daily dietary Se intake in East Amhara and West Amhara, respectively. Dietary Se intake was positively correlated with urinary Se excretion in East Amhara (r = 0.56; p < 0.001) but not among samples from West Amhara (r = 0.16; p ≥ 0.05), suggesting greater physiological Se conservation in a state of deficiency. Conclusion: There is spatial variability of Se in foods, breast milk, and urine in Ethiopia, suggesting the need for implementation of targeted agronomic interventions that enhance Se concentrations in the edible portion of plant foods.

5.
Nutr Bull ; 48(4): 587-593, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37904716

ABSTRACT

Dietary fibre is beneficial for human health, but dietary intakes are below recommended levels in most countries. Cereals are the major source of dietary fibre in Western diets, with bread providing about 20% of the daily intake in the United Kingdom. Despite the promotion of fibre-rich wholegrain products, white bread (which has a lower fibre content) remains dominant in many countries due to cultural preferences. Increasing the fibre content of white bread and other products made from white flour is therefore an attractive strategy for increasing fibre intake. This can be achieved by exploiting genetic variation in wheat without major effects on the processing quality or the consumer acceptability of products. Modelling data for food consumption in the United Kingdom shows that increasing the fibre content of white flour by 50% (from about 4% to 6% dry weight) and in wholegrain by 20% will increase total fibre intake by 1.04 g/day and 1.41 g/day in adult females and males, respectively. Furthermore, in vitro studies indicate that the increased fibre content of white bread should reduce the rate of starch digestion and glucose release in the human gastrointestinal tract.


Subject(s)
Bread , Flour , Male , Adult , Female , Humans , Starch , Dietary Fiber , Gastrointestinal Tract , Triticum
6.
Front Nutr ; 10: 1078667, 2023.
Article in English | MEDLINE | ID: mdl-37502724

ABSTRACT

Regenerative Agriculture (RA) is used to describe nature-based agronomic approaches that aim to build soil health and crop resilience, minimize negative environmental outcomes, and improve farmer livelihoods. A benefit that is increasingly attributed to crops grown under RA practices is improved nutritional content. However, we do not know the extent to which RA influences crop nutritional quality and under what management approaches and context, can such effects be realized. A scoping review of recent literature (Web of Science, 2000-2021) was carried out to assess the evidence that RA approaches improve crop micronutrient quality. Papers included combinations of agronomic approaches that could be defined as Regenerative: "Organic Inputs" including composts and manures, cover crops, crop rotations, crop residues and biochars; "Reduced Tillage", "Intercropping", "Biostimulants" e.g. arbuscular mycorrhizal fungi; plant growth promoting bacteria, and "Irrigation", typically deficit-irrigation and alternate wetting and drying. The crop types reviewed were predetermined covering common sources of food and included: Tomato (Solanum lycopersicum L.), Wheat (Triticum aestivum L.), Rice (Oryza sativa L.), Maize (Zea mays L.), Pulses (Fabaceae), Alliums (Allium spp.), and "other" crop types (30 types). This scoping review supports a potential role for RA approaches in increasing the concentrations of micronutrients in the edible portions of several crop types under specific practices, although this was context specific. For example, rice grown under increased organic inputs showed significant increases in grain zinc (Zn) concentration in 15 out of 16 studies. The vitamin C concentration of tomato fruit increased in ~50% of studies when plants were grown under increased organic inputs, and in 76% of studies when plants were grown under deficit irrigation. Overall, the magnitude and reproducibility of the effects of RA practices on most crop nutritional profiles were difficult to assess due to the diversity of RA approaches, geographical conditions, and the limited number of studies for most crops in each of these categories. Future research with appropriate designs, improved on-farm surveillance and nutritional diagnostics are needed for better understanding the potential role of RA in improving the quality of food, human nutrition, and health.

7.
Br J Nutr ; 130(12): 2123-2135, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37424305

ABSTRACT

Anaemia is characterised by low hemoglobin (Hb) concentration. Despite being a public health concern in Ethiopia, the role of micronutrients and non-nutritional factors as a determinant of Hb concentrations has been inadequately explored. This study focused on the assessment of serum micronutrient and Hb concentrations and a range of non-nutritional factors, to evaluate their associations with the risk of anaemia among the Ethiopian population (n 2046). It also explored the mediation effect of Zn on the relation between se and Hb. Bivariate and multivariate regression analyses were performed to identify the relationship between serum micronutrients concentration, inflammation biomarkers, nutritional status, presence of parasitic infection and socio-demographic factors with Hb concentration (n 2046). Sobel-Goodman test was applied to investigate the mediation of Zn on relations between serum se and Hb. In total, 18·6 % of participants were anaemic, 5·8 % had iron deficiency (ID), 2·6 % had ID anaemia and 0·6 % had tissue ID. Younger age, household head illiteracy and low serum concentrations of ferritin, Co, Cu and folate were associated with anaemia. Serum se had an indirect effect that was mediated by Zn, with a significant effect of se on Zn (P < 0·001) and Zn on Hb (P < 0·001). The findings of this study suggest the need for designing a multi-sectorial intervention to address anaemia based on demographic group.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Humans , Micronutrients , Anemia/epidemiology , Anemia/etiology , Anemia, Iron-Deficiency/epidemiology , Nutritional Status , Hemoglobins/analysis , Prevalence
8.
Front Nutr ; 10: 1235113, 2023.
Article in English | MEDLINE | ID: mdl-37497053

ABSTRACT

Introduction: Selenium (Se) deficiency is increasingly recognized as a public health problem in sub-Saharan Africa. Methods: The current cross-sectional study assessed the prevalence and geospatial patterns of Se deficiency among children aged 6-59 months (n = 741) and women of 15-49 years old (n = 831) selected by simple random sampling in rural Zimbabwe (Murewa, Shamva, and Mutasa districts). Venous blood samples were collected and stored according to World Health Organization guidelines. Plasma Se concentration was determined by inductively coupled plasma-mass spectrometry. Results: Median, Q1, and Q3 plasma Se concentrations were 61.2, 48.7, and 73.3 µg/L for women and 40.5, 31.3, and 49.5 µg/L for children, respectively. Low plasma Se concentrations (9.41 µg/L in children and 10.20 µg/L in women) indicative of severe Se deficiency risk was observed. Overall, 94.6% of children and 69.8% of women had sub-optimal Se status defined by plasma Se concentrations of <64.8 µg/L and <70 µg/L, respectively. Discussion: High and widespread Se deficiency among women and children in the three districts is of public health concern and might be prevalent in other rural districts in Zimbabwe. Geostatistical analysis by conditional kriging showed a high risk of Se deficiency and that the Se status in women and children in Murewa, Shamva, and Mutasa districts was driven by short-range variations of up to ⁓12 km. Selenium status was homogenous within each district. However, there was substantial inter-district variation, indicative of marked spatial patterns if the sampling area is scaled up. A nationwide survey that explores the extent and spatial distribution of Se deficiency is warranted.

9.
Front Nutr ; 10: 1159833, 2023.
Article in English | MEDLINE | ID: mdl-37215208

ABSTRACT

Background: Food crop micronutrient concentrations can be enhanced through agronomic biofortification, with the potential to reduce micronutrient deficiencies among rural population if they have access to fertilizers. Here we reported the impact of agronomic biofortification on finger millet grain zinc (Zn) and iron (Fe) concentration. Methods: A field experiment was conducted in farmers' fields in Ethiopia in two locations; over two seasons in one district (2019 and 2020), and over a single season (2019) in a second district. The experimental design had 15 treatment combinations comprising 3 finger millet varieties and 5 soil-applied fertilizer treatments: (T1) 20 kg ha-1 FeSO4 + 25 kg ha-1 ZnSO4 + NPKS; (T2) 25 kg ha-1 ZnSO4 + NPKS; (T3) NPKS; (T4) 30% NPKS; (T5) 20 kg ha-1 FeSO4 + NPKS. The treatments were studied at two slope positions (foot and hill), replicated four times in a randomized complete block design. Results: Grain Zn concentration increased by 20% in response to Fe and Zn and by 18.9% due to Zn addition. Similarly, grain Fe concentration increased by 21.4% in T1 and 17.8% in T5 (Fe). Zinc fertilizer application (p < 0.001), finger millet variety (p < 0.001), and an interaction of Fe and Zn had significant effect on grain Zn concentration. Iron fertilizer (p < 0.001) and interactive effect of Fe fertilizer and finger millet variety (p < 0.01) had significant effects on grain Fe concentration. Location but not slope position was a source of variation for both grain Zn and Fe concentrations. Conclusion: Soil application of Zn and Fe could be a viable strategy to enhance grain Zn and Fe concentration to finger millet grain. If increased grain Zn and Fe is bioavailable, it could help to combat micronutrient deficiencies.

10.
Food Sci Nutr ; 11(3): 1232-1246, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911837

ABSTRACT

Globally, anemia is a public health problem affecting mostly women of reproductive age (WRA, n = 452) and children aged 6-59 months (n = 452) from low- and lower-middle-income countries. This cross-sectional study assessed the prevalence and determinants of anemia in WRA and children aged 6-59 months in rural Zimbabwe. The venous blood sample was measured for hemoglobin utilizing a HemoCue machine. Anthropometric indices were assessed and classified based on World Health Organization standards. Socioeconomic characteristics were assessed. The median (±inter quartile range (IQR)) age of WRA was 29 ± 12 years and that for children was 29 ± 14 months. The prevalence of anemia was 29.6% and 17.9% in children and WRA, respectively, while the median (±IQR) hemoglobin levels were 13.4 ± 1.8 and 11.7 ± 1.5 g/dl among women and children, respectively. Multiple logistic regression analysis was used to assess determinants of anemia. Anemia in children was significantly associated with maternal anemia (odds ratio (OR) = 2.02; 95% CI 1.21-3.37; p = .007) and being a boy (OR = 0.63; 95% CI 0.41-0.95; p = .029), while anemia in WRA was significantly associated with the use of unimproved dug wells as a source of drinking water (OR = 0.36; 95% CI 0.20-0.66; p = .001) and lack of agricultural land ownership (OR = 0.51; 95% CI 0.31-0.85; p = .009). Anemia is a public health problem in the study setting. The positive association between maternal and child anemia reflects the possibility of cross-generational anemia. Therefore, interventions that focus on improving preconceptual and maternal nutritional status may help to reduce anemia in low-income settings.

11.
Br J Nutr ; 129(1): 87-103, 2023 01 14.
Article in English | MEDLINE | ID: mdl-35260210

ABSTRACT

Inflammation and infections such as malaria affect estimates of micronutrient status. Medline, Embase, Web of Science, Scopus and the Cochrane library were searched to identify studies reporting mean concentrations of ferritin, hepcidin, retinol or retinol binding protein in individuals with asymptomatic or clinical malaria and healthy controls. Study quality was assessed using the US National Institute of Health tool. Random effects meta-analyses were used to generate summary mean differences. In total, forty-four studies were included. Mean ferritin concentrations were elevated by: 28·2 µg/l (95 % CI 15·6, 40·9) in children with asymptomatic malaria; 28·5 µg/l (95 % CI 8·1, 48·8) in adults with asymptomatic malaria; and 366 µg/l (95 % CI 162, 570) in children with clinical malaria compared with individuals without malaria infection. Mean hepcidin concentrations were elevated by 1·52 nmol/l (95 % CI 0·92, 2·11) in children with asymptomatic malaria. Mean retinol concentrations were reduced by: 0·11 µmol/l (95 % CI -0·22, -0·01) in children with asymptomatic malaria; 0·43 µmol/l (95 % CI -0·71, -0·16) in children with clinical malaria and 0·73 µmol/l (95 % CI -1·11, -0·36) in adults with clinical malaria. Most of these results were stable in sensitivity analyses. In children with clinical malaria and pregnant women, difference in ferritin concentrations were greater in areas with higher transmission intensity. We conclude that biomarkers of iron and vitamin A status should be statistically adjusted for malaria and the severity of infection. Several studies analysing asymptomatic infections reported elevated ferritin concentrations without noticeable elevation of inflammation markers, indicating a need to adjust for malaria status in addition to inflammation adjustments.


Subject(s)
Anemia, Iron-Deficiency , Malaria , Vitamin A Deficiency , Child , Adult , Humans , Female , Pregnancy , Iron , Vitamin A , Hepcidins , Vitamin A Deficiency/complications , Nutritional Status , Malaria/complications , Ferritins , Inflammation
12.
Food Chem ; 402: 134277, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137379

ABSTRACT

A controlled in-vitro experiment was conducted to determine the bioaccessibility of extrinsic soil iron in pearl millet contaminated with typical Malawian soils. Pearl millet was contaminated with soils at ratios typically encountered in real life. Iron concentrations of soil-contaminated flour increased such that soil-derived iron contributed 56, 83 and 91% of the total iron when the proportions of soil were 0.1, 0.5 and 1% (soil: grain w/w), respectively. When soils were digested alone, the concentration of bioaccessible iron differed depending on the type of soil. However, the concentration of bioaccessible iron in soil-contaminated flours did not exceed that of uncontaminated flour and there was no effect of soil type. This suggests that knowledge of the proportion of extrinsic soil iron in soil-contaminated grains would be useful for iron bioavailability estimations. Vanadium is a reliable indicator of the presence of extrinsic soil iron in grains and has potential applications in this regard.


Subject(s)
Pennisetum , Soil Pollutants , Flour/analysis , Iron/analysis , Soil , Vanadium , Soil Pollutants/analysis
13.
Front Nutr ; 9: 1037161, 2022.
Article in English | MEDLINE | ID: mdl-36438724

ABSTRACT

Background: Inadequate dietary zinc (Zn) supplies and Zn deficiency (ZnD) are prevalent in Ethiopia, where cereals are major dietary sources, yet low in bioavailable Zn. Zinc agronomic biofortification (ZAB) of staple crops through application of Zn fertilizers may contribute to alleviating ZnD. However, large-scale promotion and adoption of ZAB requires evidence of the feasibility and public health benefits. This paper aimed to quantify the potential cost-effectiveness of ZAB of staple crops for alleviating ZnD in Ethiopia. Methods: Current burden of ZnD among children in Ethiopia was quantified using a disability-adjusted life years (DALYs) framework. Evidence on baseline dietary Zn intake, cereal consumption, and fertilizer response ratio was compiled from existing literature and secondary data sources. Reduction in the burden of ZnD attributable to ZAB of three staple cereals (maize, teff, and wheat) via granular and foliar Zn fertilizer applications was calculated under optimistic and pessimistic scenarios. The associated costs for fertilizer, labor, and equipment were estimated in proportion to the cropping area and compared against DALYs saved and the national Gross Domestic Product capita-1. Results: An estimated 0.55 million DALYs are lost annually due to ZnD, mainly due to ZnD-related mortality (91%). The ZAB of staple cereals via granular Zn fertilizer could reduce the burden of ZnD by 29 and 38% under pessimistic and optimistic scenarios, respectively; the respective values for ZAB via foliar application were 32 and 40%. The ZAB of staple cereals via granular fertilizer costs US$502 and US$505 to avert each DALY lost under optimistic and pessimistic scenarios, respectively; the respective values for ZAB via foliar application were US$226 and US$ 496. Foliar Zn application in combination with existing pesticide use could reduce costs to US$260-353 for each DALY saved. Overall, ZAB of teff and wheat were found to be more cost-effective in addressing ZnD compared to maize, which is less responsive to Zn fertilizer. Conclusion: ZAB of staple crops via granular or foliar applications could be a cost-effective strategy to address ZnD, which can be integrated with the existing fertilizer scheme and pesticide use to minimize the associated costs.

14.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079728

ABSTRACT

Recent surveys have revealed substantial spatial variation in the micronutrient composition of cereals in Ethiopia, where a single national micronutrient concentration values for cereal grains are of limited use for estimating typical micronutrient intakes. We estimated the district-level dietary mineral supply of staple cereals, combining district-level cereal production and crop mineral composition data, assuming cereal consumption of 300 g capita-1 day-1 proportional to district-level production quantity of each cereal. We considered Barley (Hordeum vulgare L.), maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), teff (Eragrostis tef (Zuccagni) Trotter), and wheat (Triticum aestivum L.) consumption representing 93.5% of the total cereal production in the three major agrarian regions. On average, grain cereals can supply 146, 23, and 7.1 mg capita-1 day-1 of Ca, Fe, and Zn, respectively. In addition, the Se supply was 25 µg capita-1 day-1. Even at district-level, cereals differ by their mineral composition, causing a wide range of variation in their contribution to the daily dietary requirements, i.e., for an adult woman: 1-48% of Ca, 34-724% of Fe, 17-191% of Se, and 48-95% of Zn. There was considerable variability in the dietary supply of Ca, Fe, Se, and Zn from staple cereals between districts in Ethiopia.


Subject(s)
Eragrostis , Hordeum , Sorghum , Trace Elements , Edible Grain , Ethiopia , Female , Humans , Micronutrients , Minerals , Triticum , Zea mays
15.
Front Biosci (Landmark Ed) ; 27(7): 200, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35866386

ABSTRACT

INTRODUCTION: Selenium (Se) is an essential mineral for livestock health and productivity. In cattle, Se deficiency is associated with delayed conception, growth retardation, and increased morbidity and mortality. METHODS: We conducted a survey of cattle serum (n = 224) and feed (n = 81) samples from two areas with contrasting human and cereal grain Se concentration in Ethiopia. The fodder samples include stover, straw, hay and pasture grass. Se concentration of the samples were measured using inductively coupled plasma-mass spectrometry. RESULTS: Serum Se concentration ranged from 14.9 to 167.8 µg L-1 (median, 41.4 µg L-1). Cattle from East Amhara had significantly greater serum Se concentration compared to cattle from West Amhara (median: 68.4 µg L-1 vs 25.7 µg L-1; p < 0.001). Overall, 79.8% of cattle had Se deficiency (<81 µg L-1). All of the cattle from West Amhara were Se deficient compared with 62.5% of those from East Amhara. State of lactation of cows or age of cattle was not associated with serum Se concentration. The Se concentrations of feed samples ranged from 0.05 to 269.3 µg kg-1. Feed samples from East Amhara had greater Se concentration than samples from West Amhara. Cow serum and cattle feed Se concentrations showed strong spatially correlated variation, with a strong trend from East to West Amhara. CONCLUSIONS: This study shows that cattle Se deficiency is likely to be highly prevalent in Ethiopia, which will negatively affect the health and productivity of livestock. The deficiency appears to be geographical dependent. More extensive surveys to map Se concentration in soil-feed-livestock-human cycle are required in Ethiopia and elsewhere.


Subject(s)
Selenium , Animal Feed/analysis , Ethiopia , Female , Humans , Selenium/analysis
16.
Nutrients ; 14(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35745160

ABSTRACT

We estimated dietary supplies of total and available protein and indispensable amino acids (IAAs) and predicted the risk of deficiency in Malawi using Household Consumption and Expenditure Survey data. More than half of dietary protein was derived from cereal crops, while animal products provided only 11%. The supply of IAAs followed similar patterns to that of total proteins. In general, median protein and IAA supplies were reduced by approximately 17% after accounting for digestibility, with higher losses evident among the poorest households. At population level, 20% of households were at risk of protein deficiency due to inadequate available protein supplies. Of concern was lysine supply, which was inadequate for 33% of households at the population level and for the majority of the poorest households. The adoption of quality protein maize (QPM) has the potential to reduce the risk of protein and lysine deficiency in the most vulnerable households by up to 12% and 21%, respectively.


Subject(s)
Family Characteristics , Lysine , Animals , Diet, Protein-Restricted , Dietary Proteins/metabolism , Humans , Lysine/metabolism , Malawi/epidemiology
17.
Curr Dev Nutr ; 6(5): nzac088, 2022 May.
Article in English | MEDLINE | ID: mdl-35669042

ABSTRACT

Background: Folate is essential for the synthesis and integrity of DNA, normal cell formation, and body growth. Folate deficiency among women of reproductive age (WRA) increases the risk of poor birth outcomes including neural tube defect (NTD)-affected pregnancies. Folate status is largely dependent on dietary intakes. Objectives: We aimed to explore the spatial distribution of biomarkers of folate status and their association with farming systems among nonpregnant WRA in Ethiopia. Methods: Serum and RBC folate concentration data were derived from the Ethiopia National Micronutrient Survey of 2015. The spatial dependencies of folate concentration of WRA were investigated and its relation with the dominant local farming system was explored. Results: The median serum folate and RBC folate concentrations were 12.3 nmol/L and 567.3 nmol/L, respectively. The national prevalence of folate deficiency using homocysteine concentration as a metabolic indicator based on serum and RBC folate concentration was 11.6% and 5.7%, respectively. The majority of women (77.9%) had low RBC folate concentrations consistent with increased risk of NTD-affected pregnancies. Folate nutrition was spatially dependent at distances of ≤ 300 km. A marked variability in folate concentration was observed between farming systems: greater RBC folate concentration (median: 1036 nmol/L) was found among women from the Lake Tana fish-based system, whereas the lowest RBC folate concentration (median: 386.7 nmol/L) was observed in the highland sorghum chat mixed system. Conclusions: The majority (78%) of WRA in Ethiopia had low folate status potentially increasing the risk of NTD-affected pregnancies. These findings may help national and subnational nutrition intervention strategies to target the most affected areas in the country.

18.
Br J Nutr ; 128(11): 2170-2180, 2022 12 14.
Article in English | MEDLINE | ID: mdl-35109956

ABSTRACT

Multiple micronutrient deficiencies are widespread in Ethiopia. However, the distribution of Se and Zn deficiency risks has previously shown evidence of spatially dependent variability, warranting the need to explore this aspect for wider micronutrients. Here, blood serum concentrations for Ca, Mg, Co, Cu and Mo were measured (n 3102) on samples from the Ethiopian National Micronutrient Survey. Geostatistical modelling was used to test spatial variation of these micronutrients for women of reproductive age, who represent the largest demographic group surveyed (n 1290). Median serum concentrations were 8·6 mg dl-1 for Ca, 1·9 mg dl-1 for Mg, 0·4 µg l-1 for Co, 98·8 µg dl-1 for Cu and 0·2 µg dl-1 for Mo. The prevalence of Ca, Mg and Co deficiency was 41·6 %, 29·2 % and 15·9 %, respectively; Cu and Mo deficiency prevalence was 7·6 % and 0·3 %, respectively. A higher prevalence of Ca, Cu and Mo deficiency was observed in north western, Co deficiency in central and Mg deficiency in north eastern parts of Ethiopia. Serum Ca, Mg and Mo concentrations show spatial dependencies up to 140-500 km; however, there was no evidence of spatial correlations for serum Co and Cu concentrations. These new data indicate the scale of multiple mineral micronutrient deficiency in Ethiopia and the geographical differences in the prevalence of deficiencies suggesting the need to consider targeted responses during the planning of nutrition intervention programmes.


Subject(s)
Malnutrition , Trace Elements , Humans , Female , Micronutrients , Minerals , Malnutrition/epidemiology , Ethiopia , Nutritional Status
19.
Nutrients ; 14(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35215467

ABSTRACT

Zinc-biofortified flour may be a cost-effective approach to improve zinc status of populations in low-resource settings. The success of biofortification programmes is subject to acceptability and uptake by consumers. This study explored community leaders' and community members' (n = 72) experiences and attitudes towards the flour provided during a cluster randomised controlled trial of zinc biofortified wheat in rural Pakistan (BiZiFED2). Focus group discussions (n = 12) were conducted and thematic analysis applied using an inductive, semantic, contextualist approach. Five themes were identified: (1) Contribution to food security; (2) Better sensory and baking properties than local flour; (3) Perceived health benefits; (4) Willingness to pay for the flour; and (5) Importance of trusted promoters/suppliers. Although the participants were blind to whether they had received control or biofortified flour, referred to collectively as "study flour", the results indicated that the study flour performed well in terms of its taste and bread making qualities, with no adverse reports from participants in either arm of the BIZIFED2 RCT. Participants suggested that they would buy the biofortified wheat if this was available at a fair price due to perceived health benefits, reporting positive sensory characteristics and cooking attributes when compared to the flour available in the local markets. Overall, there was a positive reception of the programme and flour among the participants, and members of the community hoped for its continuation and expansion.


Subject(s)
Flour , Zinc , Biofortification , Food, Fortified , Humans , Pakistan , Zinc/analysis
20.
Int J Food Sci Technol ; 57(10): 6336-6349, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36605250

ABSTRACT

Selenium (Se) is essential for human health, however, data on population Se status and agriculture-nutrition-health linkages are limited in sub-Saharan Africa (SSA). The scoping review aims to identify linkages between Se in soils/crops, dietary Se intakes, and livestock and human Se status in SSA. Online databases, organisational websites and grey literature were used to identify articles. Articles were screened at title, abstract and full text levels using eligibility criteria. The search yielded 166 articles from which 112 were excluded during abstract screening and 54 full text articles were assessed for eligibility. The scoping review included 34 primary studies published between 1984 and 2021. The studies covered Se concentrations in soils (n = 7), crops (n = 9), animal tissues (n = 2), livestock (n = 3), and human Se status (n = 15). The evidence showed that soil/crop Se concentrations affected Se concentration in dietary sources, dietary Se intake and biomarkers of Se status. Soil types are a primary driver of human Se status and crop Se concentration correlates positively with biomarkers of Se dietary status. Although data sets of Se concentrations exist across the food system in SSA, there is limited evidence on linkages across the agriculture-nutrition nexus. Extensive research on Se linkages across the food chain is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...