Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 20(10): e202300836, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702294

ABSTRACT

Fused coumarins, because of their remarkable biological and therapeutic properties, particularly pyranocoumarins, have caught the interest of synthetic organic chemists, leading to the development of more efficient and environmentally friendly protocols for synthesizing pyranocoumarin derivatives. These compounds are the most promising heterocycles discovered in both natural and synthetic sources, with anti-inflammatory, anti-HIV, antitubercular, antihyperglycemic, and antibacterial properties. This review employed the leading scientific databases Scopus, Web of Science, Google Scholar, and PubMed up to the end of 2022, as well as the combining terms pyranocoumarins, synthesis, isolation, structural elucidation, and biological activity. Among the catalysts employed, acidic magnetic nanocatalysts, transition metal catalysts, and carbon-based catalysts have all demonstrated improved reaction yields and facilitated reactions under milder conditions. Herein, the present review discusses the various multicomponent synthetic strategies for pyranocoumarins catalyzed by transition metal-based catalysts, transition metal-based nanocatalysts, transition metal-free catalysts, carbon-based nanocatalysts, and their potential pharmacological activities.

2.
Food Chem ; 427: 136643, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37385062

ABSTRACT

Excited state intramolecular proton transfer (ESIPT) organic luminophores with excitation wavelength-dependent color tunability have drawn significant attention due to their exceptional photoluminescent properties in solution and solid state. A novel salicylaldehyde-based Schiff's base molecule, (E)-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (BHN) exhibited stimuli (excitation wavelength and pH) induced changes in fluorescence properties which was utilised for applications like trace level water sensing in organic solvents (THF, acetone and DMF), detection and quantification of biogenic amines and anticounterfeiting. In the solution state, BHN rendered a ratiometric detection and quantification of ammonia, diethylamine and trimethylamine, which is further supported by DFT studies. The photoluminescent response of BHN towards various biogenic amines was later utilised to monitor shrimp freshness. The investigation carried out highlights the potential versatility of ESIPT hydrazones, which renders multi stimuli responsive behaviour that can be utilised for water sensing, anticounterfeiting and the detection and quantification of biogenic amines.


Subject(s)
Protons , Water , Solvents/chemistry
3.
Chemistry ; 29(25): e202203652, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36750756

ABSTRACT

We report the synthesis of 2-(4,5-diphenyl-1H-imidazole-2-yl)phenol (TPI-9) as an interesting fluorescent molecule displaying Excited-State Intramolecular-Proton-Transfer (ESIPT) with stokes shift of 120 nm. Phenolic compounds with the ability to form intramolecular hydrogen bonds and subsequent proton transfer are known as ESIPT fluorophores. Proton accepting ability can increase significantly by tailoring electron-donating groups. With the assistance of an environment-friendly organocatalyst, 10-camphor sulfonic acid (10-CSA), TPI-9 was synthesized to introduce substituents with electron-donating abilities to develop an efficient ESIPT mechanism. Factors influencing the emission, such as solvent, pH, and metal ions, are investigated. Quenching of fluorescence by Cu2+ through chelation enhancement quenching effect with a high selectivity allowed the establishment of a Cu2+ sensor with an LoD of 0.57 ppm and a ratiometric estimation with an LoD of 0.73 ppm. Metal binding (2 : 1) stoichiometry and quenching constant (0.0072 mol-1 s-1 ) are calculated from Job's and Stern-Volmer plots. Density functional theory (DFT) calculations are in accordance with the experimental results. Competitive replacement of TPI-9 by amino acids restores ESIPT, consequently, the fluorescence. Thus, an "off-on" fluorescence sensor for amino acid estimation is developed under 1 minute incubation. A linear relationship between amino acid concentration and fluorescence intensity is in 0-20 µg/mL range, and the LoD is less than 2.2 µg/mL.

4.
Mol Divers ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36656464

ABSTRACT

Five new nickel(II) complexes have been synthesised with an NNO donor tridentate aroylhydrazone (HFPB) employing the chloride, nitrate, acetate and perchlorate salts, and all the complexes are physiochemically characterized. Elemental analyses suggested stoichiometries as Ni(FPB)(NO3)]·2H2O (1), [Ni(HFPB)(FPB)]Cl (2), [Ni(FPB)(OAc)(DMF)] (3), [Ni(FPB)(ClO4)]·DMF (4), [Ni(FPB)2] (5). Aroylhydrazone is found coordinating in deprotonated iminolate form in four of the complexes (1, 3, 4, 5) however in one case (complex 2), two aroylhydrazone moieties are binding to the metal centre in the neutral and anionic forms. The structure of the bisligated complex 5, found using single crystal X ray diffraction studies confirmed that the metal has a distorted octahedral N4O2 coordination environment, with each of the two deprotonated ligands coordinating through the pyridine nitrogen, imino-hydrazone nitrogen and the enolate oxygen of the hydrazone moiety. To compare and study, the electronic interactions and stabilities of the metal complexes, various quantum chemical parameters were calculated. Moreover, Hirshfeld surface analysis was carried out for complex 5 to determine the intermolecular interactions. The biophysical attributes of the ligand and complex 5 have been investigated with CT-DNA and experimental outcomes show that the Ni(II) complex exhibited higher binding propensity towards DNA as compared to ligand. Furthermore, to specifically understand the type of interactions of the metal complexes with DNA, molecular docking studies were effectuated. In addition, the electronic and related reactivity behaviors of the ligand and five Ni(II) complexes were studied using B3LYP/6-31 + + G**/LANL2DZ level. As expected, the obtained results from Natural Bond Orbital (NBO) computations displayed that the resonance interactions (n → π* and π → π*) play a determinant role in evaluating the chemical attributes of the reported compounds.

5.
J Colloid Interface Sci ; 617: 730-744, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35316786

ABSTRACT

We report a novel synthesis route for preparing carbon quantum dots (CQDs) of customized surface functionality from readily available precursors. The synthetic strategy is based on the chemical modification of paper precursors prior to preparing CQDs from them. The pre-synthesis modification of paper precursors with (3-Aminopropyl) triethoxy silane (APTES) enabled us to synthesize CQDs with amine functional groups on the surface. The silane coupling via condensation between the ethoxy group of APTES and the cellulose hydroxyl group on the paper resulted in the tethering of amine groups on the paper substrates, which are retained as surface-bound species during the synthesis of CQDs from the modified paper. Amine functionalization on the surface of CQDs helped us use them in applications such as DNA binding. We analyzed the interaction of CQDs with calf thymus DNA (CT-DNA), and the results imply their propensity as an efficient biological probe. The synthetic strategy presented here can also be extended to other functional groups.


Subject(s)
Quantum Dots , Amines , Carbon , DNA , Silanes
SELECTION OF CITATIONS
SEARCH DETAIL
...