Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 333: 114211, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36642230

ABSTRACT

In the catfish Heteropneustes fossilis, three nonapeptide hormone genes were identified in the brain preoptic area (POA) and ovary: a pro-vasotocin (pro-vt) and two isotocin gene paralogs viz., a novel pro-ita and conventional pro-itb. In the present study, the regulatory role of catecholamines [CA: dopamine (DA), noradrenaline (NA), adrenaline (AD)] on the expression of these genes were investigated in vitro. DA (1, 10, and 100 ng/mL) inhibited significantly the mRNA expression in both the POA and ovary. NA upregulated the POA mRNA expression in a biphasic manner, the lower concentrations (1 ng and 10 ng) scaled up and the higher concentration (100 ng) scaled down the expression of pro-vt and pro-itb, while only the 1 ng NA scaled up the pro-ita expression. In the ovary, NA upregulated the mRNA expressions at all concentrations; the pro-vt expression was stimulated only at 10 and 100 ng. AD stimulated pro-vt and pro-ita expression in the POA at all concentrations but the pro-itb expression was inhibited at 1 and 10 ng, and stimulated at 100 ng concentrations. In the ovary, AD elicited varied effects; no significant change in pro-vt, a stimulation of pro-ita, and an inhibition of pro-itb at 1 ng, and stimulation of pro-itb at the 10 and 100 ng. The incubation of the POA and ovary with α-methylparatyrosine (MPT, 250 µg/mL, a tyrosine hydroxylase inhibitor) for 8 h downregulated the mRNA expression in the POA but unaltered the expression in the ovary. Pre-incubation with MPT for 4 h, followed by co-incubation with DA, NA or AD for 4 h elicited varied effects. In the POA, the co-incubations with the CAs rescued the inhibition due to MPT. The MPT + DA and MPT + AD treatments reduced the magnitude of the inhibition of pro-vt and pro-itb by MPT. But the pro-ita expression was modestly stimulated in the MPT + AD group. On the other hand, the MPT + NA treatment rescued the MPT effect and elicited 10-folds increase in the expression levels. In the ovary, the changes were: an inhibition in the MPT + DA group, no significant alteration in the MPT + NA group, and a mild stimulation in the MPT + AD group. The results suggest that CAs modulate brain and ovarian nonapeptide gene expression differentially, which is important in the neuroendocrine/endocrine integration of reproduction in the catfish.


Subject(s)
Catecholamines , Catfishes , Animals , Female , Catecholamines/pharmacology , Catecholamines/metabolism , Ovary/metabolism , Preoptic Area/metabolism , Catfishes/genetics , Catfishes/metabolism , Norepinephrine/pharmacology , Epinephrine/pharmacology , Dopamine/metabolism , Vasotocin/pharmacology , Vasotocin/metabolism , RNA, Messenger/metabolism
2.
J Neuroendocrinol ; 30(11): e12647, 2018 11.
Article in English | MEDLINE | ID: mdl-30244515

ABSTRACT

The present study reports the molecular cloning of a previously uncharacterised neurohypophyseal nonapeptide precursor cDNA in two catfish species: Heteropneustes fossilis and Clarias batrachus. The deduced nonapeptide is CYISNCPVG ([V8] isotocin), which has not been reported in any vertebrate till date. Phylogenetic and conserved synteny analyses showed the gene to have originated from the isotocin precursor (pro-it) gene by fish-specific whole genome duplication (3R). The two isotocin lineages have been designated as pro-ita (new gene) and pro-itb (conventional it gene). All teleost groups may not possess both pro-ita and pro-itb and the pattern of losses/retention was found to be lineage-specific. Quantitative reverse transcriptase-polymerase chain reaction studies showed the expression of the pro-ita gene in the brain and ovary of H. fossilis. In situ hybridisation studies localised the pro-ita transcripts in the nucleus preopticus of the hypothalamus and the follicular layer (theca-granulosa) of oocytes, comprising tissues in which pro-itb and vasotocin precursor (pro-vt) mRNA expression was previously reported. The transcript levels varied with the reproductive stage and a high abundance was found in both brain and ovary during the breeding phase. The substitution of valine in place of isoleucine at the eighth position in Ita may have modified the ligand-receptor interaction, leading to sub-functionalisation and the retention of the gene in catfishes.


Subject(s)
Brain/metabolism , Catfishes/genetics , Ovary/metabolism , Oxytocin/analogs & derivatives , Animals , Cloning, Molecular , DNA, Complementary/genetics , Evolution, Molecular , Female , Gene Duplication , Genome , Male , Oxytocin/genetics , Phylogeny , Reproduction
4.
J Exp Zool A Ecol Genet Physiol ; 323(8): 567-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26205349

ABSTRACT

Gonadotropins are heterodimeric glycoproteins secreted by the pituitary, and consist of a common glycoprotein hormone alpha (GPα) and the function-specific follicle-stimulating hormone beta subunit (FSHß) or luteinizing hormone beta subunit (LHß). In the present study, the subunit protein genes were cloned and characterized from the pituitary of the catfish Heteropneustes fossilis. Full-length cDNAs of GPα, FSHß, and LHß are 511 base pairs (bp), 659 bp and 660 bp long, and encode 92, 108, and 112 aminoacids long mature proteins, respectively. GPα has 10 cysteines with 2 N-linked glycosylation sites while LHß contains 12 cysteines with a single N-linked glycosylation site. In contrast, FSHß has 13 cysteines, 1 additional over the conserved 12 cysteines of other vertebrates, and a single glycosylation site between Cys 3 and Cys 4. Phylogenetic analyses of the deduced proteins confirm their homology and relationships with the respective gonadotropin subunit proteins of gnathostome vertebrates. Tissue expression analysis by semi-quantitative RT-PCR shows that GPα mRNA is expressed only in the pituitary while both FSHß and LHß mRNA are expressed in extra-pituitary sites. The subunit mRNAs show both seasonal and sex dimorphic variations especially in the expression of FSHß and LHß transcripts. In the sexually quiescent phase, the transcript expression is low while in the recrudescent phase, the expressions are differential, high, and varied with regard to sex and reproductive phase. In situ hybridization of the mRNAs gave positive signals in gonadotropes in the pars distalis of the pituitary, which exhibited seasonal variation in staining intensity and numbers.


Subject(s)
Catfishes/genetics , Follicle Stimulating Hormone, beta Subunit/genetics , Glycoprotein Hormones, alpha Subunit/genetics , Luteinizing Hormone, beta Subunit/genetics , Amino Acid Sequence , Animals , Catfishes/metabolism , Cloning, Molecular , Female , Follicle Stimulating Hormone, beta Subunit/metabolism , Glycoprotein Hormones, alpha Subunit/metabolism , Luteinizing Hormone, beta Subunit/metabolism , Male , Molecular Sequence Data , Phylogeny , Pituitary Gland/metabolism , RNA, Messenger/metabolism , Seasons , Sequence Analysis, DNA , Sex Characteristics
5.
Neurochem Int ; 58(5): 582-90, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21300121

ABSTRACT

Neonatal asphyxia is a primary contributor to neonatal mortality and neuro-developmental disorders. It progresses in two distinct phases, as initial primary process and latter as the secondary process. A dynamic relationship exists between excitotoxicity and mitochondrial dysfunction during the progression of asphyxic injury. Study of status of glutamate and mitochondrial function in tandem during primary and secondary processes may give new leads to the treatment of asphyxia. Neonatal asphyxia was induced in rat pups on the day of birth by subjecting them to two episodes (10min each) of anoxia, 24h apart by passing 100% N(2) into an enclosed chamber. The NMDA antagonist ketamine (20mg/kg/day) was administered either for 1 day or 7 days after anoxic exposure. Tissue glutamate and nitric oxide were estimated in the cerebral cortex, extra-cortex and cerebellum. The mitochondria from the above brain regions were used for the estimation of malondialdehyde, and activities of superoxide dismutase and succinate dehydrogenase. Mitochondrial membrane potential was evaluated by using Rhodamine dye. Anoxia during the primary process increased glutamate and nitric oxide levels; however the mitochondrial function was unaltered in terms of succinate dehydrogenase and membrane potential. Acute ketamine treatment reversed the increase in both glutamate and nitric oxide levels and partially attenuated mitochondrial function in terms of succinate dehydrogenase activity. The elevated glutamate and nitric oxide levels were maintained during the secondary process but however with concomitant loss of mitochondrial function. Repeated ketamine administration reversed glutamate levels only in the cerebral cortex, where as nitric oxide was decreased in all the brain regions. However, repeated ketamine administration was unable to reverse anoxia-induced mitochondrial dysfunction. The failure of glutamate antagonism in the treatment of asphyxia may be due to persistence of mitochondrial dysfunction. Therefore, additionally targeting mitochondrial function may prove to be therapeutically beneficial in the treatment of asphyxia.


Subject(s)
Asphyxia/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Mitochondria/pathology , Animals , Animals, Newborn , Asphyxia/drug therapy , Female , Ketamine/pharmacology , Ketamine/therapeutic use , Mitochondria/drug effects , Oxidative Stress/physiology , Pregnancy , Rats , Time Factors
6.
Article in English | MEDLINE | ID: mdl-16730203

ABSTRACT

In vitro effects of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, calphostin C (PKC inhibitor) and okadaic acid [OA, a protein phosphatase (PP; PP1 and PP2A) inhibitor] on 2-hydroxyestradiol-17beta (2-OHE(2))-induced oocyte maturation were investigated in the catfish Heteropneustes fossilis. Incubations of postvitellogenic follicles with PMA or OA alone did not induce oocyte maturation. However, co-incubations with 2-OHE(2) and PMA (0.05, 0.5 and 5 microM) or 2-OHE(2) and OA (0.5, 1.0 or 2.0 microM) increased germinal vesicle breakdown (GVBD) significantly over that of 2-OHE(2). Incubation of follicles with calphostin C elicited varied effects on GVBD, low (0.005 and 0.01 microM) and high (5.0 and 10.0 microM) concentrations did not affect GVBD, but medium concentrations (0.05, 0.1, 0.5, 1.0 and 2.5 microM) stimulated it. The medium concentrations elicited a biphasic stimulatory response with peak GVBD at 0.1 microM (54%). Calphostin C (>or=2.5 microM) inhibited the 2-OHE(2)-induced GVBD in a concentration-dependent manner during the 24 h incubation. Pre- or post-treatment with calphostin C inhibited the steroid-induced GVBD only at 6 h. In co-incubation studies, both PMA and OA reversed the inhibitory effect of calphostin C: the former partially and the latter fully. The results of the present study show that PKC appears to modulate the 2-OHE(2)-induced oocyte maturation. The OA-sensitive PP may be involved in the PKC modulation of steroid-induced oocyte maturation.


Subject(s)
Catfishes/growth & development , Estradiol/analogs & derivatives , Oocytes/cytology , Oocytes/enzymology , Phosphoprotein Phosphatases/metabolism , Protein Kinase C/metabolism , Animals , Cell Differentiation , Enzyme Inhibitors/pharmacology , Estradiol/pharmacology , Female , Naphthalenes/pharmacology , Okadaic Acid/pharmacology , Oocytes/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...