Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(3)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34598177

ABSTRACT

Polycrystalline GdFe1-xNixO3(x = 0.00, 0.02, 0.04) samples was synthesised using a glycine assisted sol-gel method to investigate the enhanced magnetic and electric properties of Ni substituted GdFeO3systems. TG-DSC analysis of prepared samples confirms that GdFe1-xNixO3have good thermal stability in high temperatures. The system has been stabilized in an orthorhombic structure with space group Pbnm.The elemental composition of GdFe1-xNixO3has been estimated from EDAX spectrum. The results showed oxygen deficiency on increasing the Ni substitution and it has been supported by Rietveld refinement. FE-SEM images and Brunauer-Emmett-Teller analysis reveals that GdFe1-xNixO3is a highly porous material and its porosity and specific area increases with Ni substitution. Magnetic measurements indicates that the system exhibited ferrimagnetic behaviour at low temperatures and canted antiferromagnetic behaviour at room temperature. Forx = 0.04 Ni content, magnetization reversal for applied field of 25 Oe has been observed. Increased coercivity of GdFeO3with Ni substitution has been attributed to the grain size effect. From electrical point of view, dielectric permittivity of GdFeO3has been enhanced with Ni substitution. This enhancement has been attributed to the cumulative effects of hopping of Fe2+-Fe3+ions, grain-grain boundary contribution, and space charge polarization. The role of grain-grain boundary contribution is evident from electric modulus spectrum. The space charge effect has been realized in both impedance spectrum and dielectric loss. Temperature-dependent dielectric studies were conducted to understand the mechanisms and various aspects that contribute to the dielectric enhancement. A highly lossy capacitive nature in theP-Eloop also suggests space charge effects due to Ni substitution in Fe sites. Availability of free charge carrier concentration is correlated with the optical properties of GdFe1-xNixO3. The decrease of optical band gap (2.5-2.21 eV) on increasing Ni content suggests the increasing electronic contribution in the system.

2.
Nanotechnology ; 27(8): 085701, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26808999

ABSTRACT

Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...