Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 42(5): 953-956, 2023 May.
Article in English | MEDLINE | ID: mdl-36840757

ABSTRACT

KEY MESSAGE: T-DNA and CRISPR/Cas9-mediated knockout of polyester synthase-like genes delays flowering time in Arabidopsis thaliana and Medicago sativa (alfalfa). Thus, we here present the first report of edited alfalfa with delayed flowering.


Subject(s)
Arabidopsis , Medicago sativa , Medicago sativa/genetics , CRISPR-Cas Systems/genetics , Flowers/genetics , Arabidopsis/genetics
3.
Front Plant Sci ; 12: 805032, 2021.
Article in English | MEDLINE | ID: mdl-35046986

ABSTRACT

Most major crops are polyploid species and the production of genetically engineered cultivars normally requires the introgression of transgenic or gene-edited traits into elite germplasm. Thus, a main goal of plant research is the search of systems to identify dominant mutations. In this article, we show that the Tnt1 element can be used to identify dominant mutations in allogamous tetraploid cultivated alfalfa. Specifically, we show that a single allelic mutation in the MsNAC39 gene produces multifoliate leaves (mfl) alfalfa plants, a pivot trait of breeding programs of this forage species. Finally, we discuss the potential application of a combination of preliminary screening of beneficial dominant mutants using Tnt1 mutant libraries and genome editing via the CRISPR/Cas9 system to identify target genes and to rapidly improve both autogamous and allogamous polyploid crops.

4.
J Glob Antimicrob Resist ; 22: 113-116, 2020 09.
Article in English | MEDLINE | ID: mdl-32007617

ABSTRACT

OBJECTIVES: Unlike higher organisms such as domestic animals and cultivated plants, which display a robust reproductive isolation and limited dispersal ability, microbes exhibit an extremely promiscuous gene flow and can rapidly disperse across the planet by multiple ways. Thus, microbial plasmids, including synthetic replicons, containing antibiotic resistance genes are a serious risk to public health. In this short communication, we explored the presence of synthetic elements in alfalfa symbionts (Ensifer meliloti strains) from agricultural soils. METHODS: A total of 148 E. meliloti isolates from alfalfa plants growing under field conditions were collected from January 2015 to June 2019. Antimicrobial susceptibility testing was performed under laboratory conditions. We identified five kanamycin-resistant E. meliloti strains (named K1-K5). Whole genome sequencing analysis and conjugations were used to identify and study the plasmids of K strains. RESULTS: We found that the genomes of K strains contain ampicillin, kanamycin and tetracycline resistance genes, the reporter gene lacZ from Escherichia coli and multiple cloning sites. These sequences were found within <58-kb plasmids related to the self-transmissible IncP plasmid RP4 from human pathogen Pseudomonas aeruginosa. Conjugation experiments confirmed the ability of K strains to transfer antibiotic resistance via conjugation to the Pseudomonas background. CONCLUSION: In addition to the traditional analysis of plant growth-promoting factors, the commercial deregulation of putative natural inoculants should also include genomic studies to ensure a reasonable balance between innovation and caution.


Subject(s)
Anti-Bacterial Agents , Soil , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Escherichia coli/genetics , Humans , Plasmids/genetics
5.
Microb Ecol ; 79(4): 1044-1053, 2020 May.
Article in English | MEDLINE | ID: mdl-31828388

ABSTRACT

We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.


Subject(s)
Bacterial Proteins/genetics , Climate , Mutation , Nitrate Reductases/genetics , Nitrous Oxide/metabolism , Sinorhizobium meliloti/physiology , Amino Acid Sequence , Argentina , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Nitrate Reductases/chemistry , Nitrate Reductases/metabolism , Phylogeny , Sequence Alignment , Sinorhizobium meliloti/genetics
6.
FEBS J ; 286(5): 991-1002, 2019 03.
Article in English | MEDLINE | ID: mdl-30430736

ABSTRACT

One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo- and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo- and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo- and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet.


Subject(s)
Aquaporins/metabolism , Protons , Xenopus Proteins/metabolism , Animals , Aquaporins/chemistry , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Protein Conformation , Water/metabolism , Xenopus Proteins/chemistry , Xenopus laevis
7.
J Theor Biol ; 456: 29-33, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30063924

ABSTRACT

After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.


Subject(s)
Acyltransferases/metabolism , Cytosol/enzymology , Evolution, Molecular , Extracellular Space/enzymology , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/metabolism , Phylogeny , Protein Transport/genetics , Pseudomonas/genetics , Sequence Alignment
8.
Theor Appl Genet ; 131(5): 1111-1123, 2018 May.
Article in English | MEDLINE | ID: mdl-29397404

ABSTRACT

KEY MESSAGE: A novel process for the production of transgenic alfalfa varieties. Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.


Subject(s)
Genetic Engineering/methods , Medicago sativa/genetics , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Herbicide Resistance/genetics , Heterozygote , Transgenes
9.
Microb Ecol ; 76(2): 299-302, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29330647

ABSTRACT

As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (N2O). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of N2O from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of N2O to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and N2O reductase genes for environmental sustainability of alfalfa production.


Subject(s)
Bacteria/genetics , Medicago sativa/microbiology , Multigene Family , Oxidoreductases/genetics , Rhizobium/genetics , Bacteria/metabolism , Denitrification/genetics , Evolution, Molecular , Genome Size , Nitrates/metabolism , Nitrites/metabolism , Nitrogen Fixation , Nitrous Oxide/metabolism , Symbiosis
10.
J Biotechnol ; 263: 52-54, 2017 Dec 10.
Article in English | MEDLINE | ID: mdl-29050878

ABSTRACT

We here characterized the stress-tolerant alfalfa microsymbiont Sinorhizobium meliloti B401. B401-treated plants showed high nitrogen fixation rates under humid and semiarid environments. The production of glycine betaine in isolated bacteroids positively correlated with low precipitation levels, suggesting that this compound acts as a critical osmoprotectant under field conditions. Genome analysis revealed that strain B401 contains alternative pathways for the biosynthesis and uptake of glycine betaine and its precursors. Such genomic information will offer substantial insight into the environmental physiology of this biotechnologically valuable nitrogen-fixing bacterium.


Subject(s)
Genome, Bacterial/genetics , Medicago sativa/microbiology , Nitrogen Fixation/genetics , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Adaptation, Physiological , Betaine/metabolism , Droughts , Genomics , Medicago sativa/physiology , Sinorhizobium meliloti/metabolism , Symbiosis
11.
J Mol Evol ; 85(3-4): 79-83, 2017 10.
Article in English | MEDLINE | ID: mdl-28828631

ABSTRACT

Despite the vast screening for natural nitrogen-fixing isolates by public and private consortia, no significant progresses in the production of improved nitrogen-fixing inoculants for alfalfa production have been made in the last years. Here, we present a comprehensive characterization of the nitrogen-fixing strain Ensifer meliloti B399 (originally named Rhizobium meliloti 102F34), probably the inoculant most widely used in alfalfa production since the 1960s. Complete nucleotide sequence and genome analysis of strain B399 showed that the three replicons present in this commercial strain and the model bacterium Ensifer meliloti 1021 are extremely similar to each other in terms of nucleotide identity and synteny conservation. In contrast to that observed in B399-treated plants, inoculation of plants with strain 1021 did not improve nitrogen content in different alfalfa cultivars under field conditions, suggesting that a small genomic divergence can drastically impact on the symbiotic phenotype. Therefore, in addition to the traditional screening of natural nitrogen-fixing isolates, the genome engineering of model strains could be an attractive strategy to improve nitrogen fixation in legume crops.


Subject(s)
Biological Evolution , Genome, Bacterial , Nitrogen Fixation/genetics , Sinorhizobium meliloti/genetics , Symbiosis , Genomics , Medicago sativa/genetics , Medicago sativa/physiology , Sequence Analysis, DNA , Sinorhizobium meliloti/metabolism , Sinorhizobium meliloti/physiology , Synteny
12.
FEBS Lett ; 591(11): 1555-1565, 2017 06.
Article in English | MEDLINE | ID: mdl-28486763

ABSTRACT

Previous works proposed that aquaporins behave as mechanosensitive channels. However, principal issues about mechanosensitivity of aquaporins are not known. In this work, we characterized the mechanosensitive properties of the water channels BvTIP1;2 (TIP1) and BvPIP2;1 (PIP2) from red beet (Beta vulgaris). We simultaneously measured the mechanical behavior and the water transport rates during the osmotic response of emptied-out oocytes expressing TIP1 or PIP2. Our results indicate that TIP1 is a mechanosensitive aquaporin, whereas PIP2 is not. We found that a single exponential function between the osmotic permeability coefficient and the volumetric elastic modulus governs the mechanosensitivity of TIP1. Finally, homology modeling analysis indicates that putative residues involved in mechanosensitivity show different quantity and distribution in TIP1 and PIP2.


Subject(s)
Aquaporins/metabolism , Beta vulgaris/metabolism , Cell Membrane/metabolism , Plant Proteins/metabolism , Beta vulgaris/genetics , Beta vulgaris/physiology , Osmosis/physiology , Plant Proteins/genetics
13.
Plant Cell Rep ; 35(9): 1987-90, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27447893

ABSTRACT

Alfalfa is the most important forage legume worldwide. However, similar to other minor forage crops, it is usually harvested along with weeds, which decrease its nutrient quality and thus reduce its high value in the market. In addition, weeds reduce alfalfa yield by about 50 %. Although weeds are the limiting factor for alfalfa production, little progress has been made in the incorporation of herbicide-tolerant traits into commercial alfalfa. This is partially due to the high times and costs needed for the production of vast numbers of transgenic alfalfa events as an empirical approach to bypass the random transgenic silencing and for the identification of an event with optimal transgene expression. In this focus article, we report the complete sequence of pPZP200BAR and the extremely high efficiency of this binary vector in alfalfa transformation, opening the way for rapid and inexpensive production of transgenic events for alfalfa improvement public programs.


Subject(s)
Costs and Cost Analysis , Gene Library , Genetic Techniques/economics , Genetic Vectors/metabolism , Medicago sativa/genetics , Sequence Analysis, DNA , Plants, Genetically Modified , Plasmids/metabolism , Time Factors , Transformation, Genetic
15.
Biophys J ; 110(6): 1312-21, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27028641

ABSTRACT

Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.


Subject(s)
Aquaporins/chemistry , Aquaporins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Multimerization , Water/metabolism , Animals , Biological Transport , Cell Membrane/metabolism , Cell Membrane Permeability , Hydrogen-Ion Concentration , Osmosis , Protons , Xenopus laevis/metabolism
16.
J Membr Biol ; 247(2): 107-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24292667

ABSTRACT

Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165-176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.


Subject(s)
Aquaporins/physiology , Animals , Aquaporins/classification , Bacteria , Biological Transport , Eukaryota , Evolution, Molecular , Humans , Multigene Family , Phylogeny , Plants , Protein Conformation , Protein Interaction Domains and Motifs
17.
PLoS One ; 8(3): e57993, 2013.
Article in English | MEDLINE | ID: mdl-23483963

ABSTRACT

Research done in the last years strongly support the hypothesis that PIP aquaporin can form heterooligomeric assemblies, specially combining PIP2 monomers with PIP1 monomers. Nevertheless, the structural elements involved in the ruling of homo versus heterooligomeric organization are not completely elucidated. In this work we unveil some features of monomer-monomer interaction in Beta vulgaris PIP aquaporins. Our results show that while BvPIP2;2 is able to interact with BvPIP1;1, BvPIP2;1 shows no functional interaction. The lack of functional interaction between BvPIP2;1 and BvPIP1;1 was further corroborated by dose-response curves of water permeability due to aquaporin activity exposed to different acidic conditions. We also found that BvPIP2;1 is unable to translocate BvPIP1;1-ECFP from an intracellular position to the plasma membrane when co-expressed, as BvPIP2;2 does. Moreover we postulate that the first extracellular loop (loop A) of BvPIP2;1, could be relevant for the functional interaction with BvPIP1;1. Thus, we investigate BvPIP2;1 loop A at an atomic level by Molecular Dynamics Simulation (MDS) and by direct mutagenesis. We found that, within the tetramer, each loop A presents a dissimilar behavior. Besides, BvPIP2;1 loop A mutants restore functional interaction with BvPIP1;1. This work is a contribution to unravel how PIP2 and PIP1 interact to form functional heterooligomeric assemblies. We postulate that BvPIP2;1 loop A is relevant for the lack of functional interaction with BvPIP1;1 and that the monomer composition of PIP assemblies determines their functional properties.


Subject(s)
Aquaporins/chemistry , Aquaporins/metabolism , Beta vulgaris/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Amino Acid Sequence , Animals , Cell Membrane Permeability , Conserved Sequence , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Osmosis , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/metabolism , Structure-Activity Relationship , Xenopus laevis
18.
Plant Mol Biol ; 74(1-2): 105-18, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20593222

ABSTRACT

The plant plasma membrane barrier can express aquaporins (PIP1 and PIP2) that show two intriguing aspects: (1) the potential of modulating whole membrane water permeability by co-expression of both types, which have recently been distinguished for showing a different capacity to reach the plasma membrane; and (2) the faculty to reduce water permeation through the pore after cytosolic acidification, as a consequence of a gating process. Our working hypothesis is that these two key features might enhance plasticity of the membrane water transport capacity if they jointly trigger any cooperative interaction. In previous work, we proved by biophysical approaches that the plasma membrane of the halophyte Beta vulgaris storage root presents highly permeable aquaporins that can be shut down by acidic pH. Root Beta vulgaris PIPs were therefore subcloned and expressed in Xenopus oocytes. Co-expression of BvPIP1;1 and BvPIP2;2 not only enhances oocyte plasma membrane water permeability synergistically but also reinforces pH inhibitory response from partial to complete shut down after cytosolic pH acidification. This pH dependent behavior shows that PIP1-PIP2 co-expression accounts for a different pH sensitivity in comparison with PIP2 expression. These results prove for the first time that PIP co-expression modulates the membrane water permeability through a pH regulatory response, enhancing in this way membrane versatility to adjust its water transfer capacity.


Subject(s)
Aquaporins/metabolism , Beta vulgaris/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Animals , Aquaporins/genetics , Base Sequence , Beta vulgaris/genetics , Cell Membrane Permeability , DNA Primers/genetics , DNA, Plant/genetics , Female , Gene Expression , Genes, Plant , Hydrogen-Ion Concentration , In Vitro Techniques , Intracellular Fluid/metabolism , Molecular Sequence Data , Oocytes/metabolism , Phylogeny , Plant Proteins/genetics , Plant Roots/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Water/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...