Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5465, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937478

ABSTRACT

Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.

2.
Sensors (Basel) ; 23(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005654

ABSTRACT

A noise-resistant linearization model that reveals the true nonlinearity of the sensor is essential for retrieving accurate physical displacement from the signals captured by sensing electronics. In this paper, we propose a novel information-driven smoothing spline linearization method, which innovatively integrates one new and three standard information criterions into a smoothing spline for the high-precision displacement sensors' linearization. Using theoretical analysis and Monte Carlo simulation, the proposed linearization method is demonstrated to outperform traditional polynomial and spline linearization methods for high-precision displacement sensors with a low noise to range ratio in the 10-5 level. Validation experiments were carried out on two different types of displacement sensors to benchmark the performance of the proposed method compared to the polynomial models and the the non-smoothing cubic spline. The results show that the proposed method with the new modified Akaike Information Criterion stands out compared to the other linearization methods and can improve the residual nonlinearity by over 50% compared to the standard polynomial model. After being linearized via the proposed method, the residual nonlinearities reach as low as ±0.0311% F.S. (Full Scale of Range), for the 1.5 mm range chromatic confocal displacement sensor, and ±0.0047% F.S., for the 100 mm range laser triangulation displacement sensor.

4.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560274

ABSTRACT

This paper presents a fiber-based chromatic dispersion probe for the simultaneous measurement of dual-axis absolute and relative displacement with nanometric resolutions. The proposed chromatic dispersion probe is based on optical dispersion. In the probe, the employed light beam is split into two sub-beams, and then the two sub-beams are made to pass through two optical paths with different optical settings where two identical single-mode fiber detectors are located at different defocused positions of the respective dispersive lenses. In this way, two spectral signals can be obtained to indicate the absolute displacement of each of the dual-axes. A signal processing algorithm is proposed to generate a normalized output wavelength that indicates the relative displacement of the dual-axis. With the proposed chromatic dispersion probe, the absolute and relative displacement measurements of the dual-axis can be realized simultaneously. Theoretical and experimental investigations reveal that the developed chromatic dispersion probe realizes an absolute measurement range and a measurement resolution of approximately 180 µm and 50 nm, respectively, for each axis. Moreover, a relative displacement measurement range and a measurement resolution of about 240 µm and 100 nm, respectively, are achieved for the dual-axis.

5.
Rev Sci Instrum ; 93(2): 025102, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35232163

ABSTRACT

We studied a multi-metallic microscale 3D printing based on the meniscus-confined electrodeposition (MCED). The composition of Cu/Pt alloys can be controlled by applying different bias voltages to the CuSO4/H2PtCl4 mixed solution in MCED. We find that a double-barrel system had higher Cu/Pt alloy purity (maximum 100% Cu or maximum 80% Pt) than a single-barrel system. A Λ-shaped microstructure was printed to verify the capability to multi-metal microstructures in a single printing process.

6.
Nano Lett ; 22(4): 1595-1603, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35133850

ABSTRACT

Optical beam steerers have been widely employed for information acquisitions. Numerous beam steering schemes have been developed, and each of them can satisfy practical requirements for certain scenarios. However, there is still a lack of a comprehensive approach that is able to balance all of the critical technical parameters for wide range of applications. Here, a semisolid micromechanical beam steering system based on micrometa-lens arrays (MMLAs) is demonstrated. It is operated by manipulating the probe beam over two sets of decentered MMLAs potentially driven by high-speed piezo-electric motors. Small f-numbers, well-corrected aberration, and easy lateral reproduction of micrometa-lenses optimize the overall technical parameters. As a proof-of-concept, we implement such a device exhibiting diffraction-limited resolution within a large field of view of 30° × 30°. A three-dimensional depth sensing is also performed to demonstrate its potential in light detection and ranging applications.


Subject(s)
Lenses , Equipment Design , Equipment Failure Analysis
7.
Sensors (Basel) ; 23(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616648

ABSTRACT

In this paper, a fiber-based chromatic dispersion probe for simultaneous measurement of X-axis and Z-axis displacements with nanometric resolutions by using the full width at half maxima (FWHM) of the detected spectral signal has been proposed and demonstrated. For X-axis, FWHM is employed for indicating the X-axis displacement based on the fact that the FWHM remains almost constant with the varying Z-axis displacement of the fiber detector and shows a linear relationship with the X-axis displacement within a specific Z-axis displacement range. For the Z-axis, the linear relationship between the centroid wavelength λ of the detected spectral signal and the Z-axis displacement is employed for indicating the Z-axis displacement based on the fact that the sensitivity (slope of the λ-Z curve) is also linear with X-axis displacement within a certain X-axis displacement range. Theoretical and experimental investigations have verified the feasibility of the proposed chromatic dispersion probe, which yields X- and Z-axis measurement ranges of 2.3 µm and 15 µm and X- and Z-axis measurement resolutions of better than 25 nm and 50 nm, respectively. Experiments were further performed to evaluate the basic performance of the prototype probe and the maximum measurement errors were less than 10 nm and 60 nm for X- and Z-axis displacements, respectively.

8.
Micromachines (Basel) ; 12(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34832778

ABSTRACT

Piezoelectric actuators are widely used in the field of micro- and nanopositioning due to their high frequency response, high stiffness, and high resolution. However, piezoelectric actuators have hysteresis nonlinearity, which severely affects their positioning accuracy. As the driving frequency increases, the performance of piezoelectric actuators further degrades. In addition, the impact of force on piezoelectric actuators cannot be ignored in practical applications. Dynamic hysteresis with force-voltage coupling makes the hysteresis phenomenon more complicated when force and driving voltage are both applied to the piezoelectric actuator. Existing hysteresis models are complicated, or inaccurate in describing dynamic hysteresis with force-voltage coupling. To solve this problem, a force-voltage-coupled Prandtl-Ishlinskii (FVPI) model is proposed in this paper. First, the influence of driving frequency and dynamic force on the output displacement of the piezoelectric actuators are analyzed. Then, the accuracy of the FVPI model is verified through experiments. Finally, a force integrated direct inverse (F-DI) compensator based on the FVPI model is designed. The experimental results from this study show that the F-DI compensator can effectively suppress dynamic hysteresis with force-voltage coupling of piezoelectric actuators. This model can improve the positioning accuracy of piezoelectric actuators, thereby improving the working accuracy of the micro- or nano-operating system.

9.
Rev Sci Instrum ; 92(5): 054901, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243283

ABSTRACT

In this paper, the width and depth of rectangular surface-breaking defects were successfully gauged using an all-optical laser-ultrasonic system. The finite element method was used to simulate propagating paths of defect-induced reflected and transmitted Rayleigh waves. It is observed that most Rayleigh waves with wavelengths less than the depth of the defect are reflected by the defect. A small part of the Rayleigh waves with wavelengths greater than the depth of the defect directly transmits through the bottom edge of the defect without acting on the left edge of the defect. Based on the simulation results, a three-step detection method of width and depth gauging of rectangular surface-breaking defects is proposed. In the first step, the pulsed laser and detection laser are irradiated on one side of the defect. In the second step, the sample is moved to a certain distance to ensure that both lasers reach the other side of the defect. In the third step, two lasers are irradiated on both sides of the defect. The width and depth of the defect are calculated according to the arrival time of the incident, reflected, and transmitted Rayleigh waves, as well as the movement distance of the sample. Experimental results are consistent with the reference-results measured by using a digital microscope. The proposed three-step detection method is proved to be feasible in simultaneous measurement of the width and depth of rectangular surface-breaking defects. Furthermore, it may be potentially useful for measuring other types of defect structures.

10.
Micromachines (Basel) ; 12(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467202

ABSTRACT

Piezoelectric actuators are widely used in micro- and nano-manufacturing and precision machining due to their superior performance. However, there are complex hysteresis nonlinear phenomena in piezoelectric actuators. In particular, the inherent hysteresis can be affected by the input frequency, and it sometimes exhibits asymmetrical characteristic. The existing dynamic hysteresis model is inaccurate in describing hysteresis of piezoelectric actuators at high frequency. In this paper, a Dynamic Delay Prandtl-Ishlinskii (DDPI) model is proposed to describe the asymmetrical and dynamic characteristics of piezoelectric actuators. First, the shape of the Delay Play operator is discussed under two delay coefficients. Then, the accuracy of the DDPI model is verified by experiments. Next, to compensate the asymmetrical and dynamic hysteresis, the compensator is designed based on the Inverse Dynamic Delay Prandtl-Ishlinskii (IDDPI) model. The effectiveness of the inverse compensator was verified by experiments. The results show that the DDPI model can accurately describe the asymmetrical and dynamic hysteresis, and the compensator can effectively suppress the hysteresis of the piezoelectric actuator. This research will be beneficial to extend the application of piezoelectric actuators.

11.
Ultrasonics ; 111: 106315, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33290958

ABSTRACT

Recently, researchers proposed the use of ultrasound combined with analytic-signal concepts for the reconstruction of the internal ply structure of composites. Optimal parameters for the pulse-echo mode ultrasonic testing are determined by modeling the analytic-signal response. The internal structure can be reconstructed by instantaneous metrics based on the interaction of the multilayer structure and the ultrasonic wave. However, there are certain drawbacks associated with the use of instantaneous metrics. The phase-derived interply track tends to be sensitive to the inspection conditions. This paper analytically studies the errors of the interply tracking for a wide range of parameters, including (i) signal-to-noise ratio, (ii) bandwidth, (iii) interply thickness, and (iv) attenuation, amongst others. It provides a guideline on how to improve the performance of the interply tracking procedure in real measurements. An experimental study combining the analytic-signal procedure with a standard log-Gabor filter in the frequency domain is performed to derive the interply tracks of a 24-layer composite laminate in a robust way. The bandpass filter selects the appropriate frequency band of the analytic-signal response from the composite. It shows a good ability for frequency and bandwidth selection, and can efficiently cope with noise features. The reconstructed ply tracks in A-scan, B-scan, and C-scan modes are analyzed to verify the performance of this procedure.

12.
Micromachines (Basel) ; 11(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899156

ABSTRACT

Spherical joints have attracted increasing interest in the engineering applications of machine tools, industrial robots, medical equipment, and so on. As one of the promising methods of detecting the micro-clearance in spherical joints, the measurement accuracy of a spherical capacitive sensor could be affected by imperfectness during the manufacturing and installation of the sensor. This work presents error analysis of a spherical capacitive sensor with a differential structure and explores the dependence of the differential capacitance on manufacturing and the installation imperfectness. Five error sources are examined: the shape of the ball and the capacitive plate, the axial and radial offset of the plate, and the inclined installation of the plate. The mathematical models for calculating the capacitance errors of the spherical capacitive sensor are deduced and validated through a simulation using Ansoft Maxwell. The results show that the measurement accuracy of the spherical capacitive sensor is significantly affected by the shape of plates and ball, the axial offset, and the inclined angle of the plate. In contrast, the effect of the radial offset of the plate is quite small.

13.
Opt Express ; 28(16): 24123-24135, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752398

ABSTRACT

CCD arrays encode color information via uniformly distributed red, green and blue pixels. Therefore, even a perfectly achromatic system projecting an image onto a CCD plane cannot possibly associate a single object point with the 3 or more discrete pixels encoding color content. Here, we propose and demonstrate a micro-lens array (MLA) design that simultaneously corrects chromatic aberrations and separates color channels to spatially distinct pixels. Starting from a commercially available aspheric condenser lens, methods to design and assess the performance of a few microns deep MLA etched on the convex optical surface are detailed. Actual fabrication is carried out by fluid jet polishing, with an optical form deviation of 0.24 µm rms. Finally, the MLA is assessed with a narrowly collimated beam containing two wavelengths, which produces distinct spots of diameter 10-15 µm as expected.

14.
Nano Lett ; 20(7): 5133-5140, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32530632

ABSTRACT

Immune checkpoint blockade with monoclonal antibodies (mAbs) that target programmed cell death protein-1 (PD-1) has remarkably revolutionized cancer therapy. Their binding kinetics measured by surface plasmon resonance does not always correlate well with their immunotherapeutic efficacies, mainly due to the lack of two-dimensional cell plasma membrane and the capability of force sensing and manipulation. In this regard, based on a more suitable and ultra-sensitive biomechanical nanotool, biomembrane force probe (BFP), we developed a Double-edge Smart Feedback control system as an ultra-stable platform to characterize ultra-long bond lifetimes of receptor-ligand binding on living cells. We further benchmarked the dissociation kinetics for three clinically approved PD-1 blockade mAbs (Nivolumab, Pembrolizumab, and Camrelizumab), intriguingly correlating well with the objective response rates in the hepatocellular carcinoma second-line treatment. This ultra-stable BFP potentially provides a compelling kinetic platform to direct the screening, optimization, and clinical selection of therapeutic antibodies in the future.


Subject(s)
Antineoplastic Agents, Immunological , Programmed Cell Death 1 Receptor , Antibodies, Monoclonal , Antineoplastic Agents, Immunological/pharmacology , Kinetics , Nivolumab
15.
Rev Sci Instrum ; 91(3): 036103, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32259971

ABSTRACT

Detection of surface defects is critical in quality control of reflective optics. In this note, we propose a new surface defect detection method for reflective optics using the normalized reflectivity, which is calculated from the signal intensity of a chromatic confocal surface profiler. This detection method first scans the surface to acquire signal intensity data and then models the intensity data to calculate the normalized local reflectivity map. The reflectivity map is further processed by threshold segmentation to extract defects from normal areas. Measurement experiments on an Al-coated concave reflector with artificial defects were carried out to demonstrate the feasibility of the method. This detection method can provide existing optical surface profilers with defect detecting capabilities without extra equipment.

16.
Micromachines (Basel) ; 11(4)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235522

ABSTRACT

Because of fast frequency response, high stiffness, and displacement resolution, the piezoelectric actuators (PEAs) are widely used in micro/nano driving field. However, the hysteresis nonlinearity behavior of the PEAs affects seriously the further improvement of manufacturing accuracy. In this paper, we focus on the modeling of asymmetric hysteresis behavior and compensation of PEAs. First, a polynomial-modified Prandtl-Ishlinskii (PMPI) model is proposed for the asymmetric hysteresis behavior. Compared with classical Prandtl-Ishlinskii (PI) model, the PMPI model can be used to describe both symmetric and asymmetric hysteresis. Then, the congruency property of PMPI model is analyzed and verified. Next, based on the PMPI model, the inverse model (I-M) compensator is designed for hysteresis compensation. The stability of the I-M compensator is analyzed. Finally, the simulation and experiment are carried out to verify the accuracy of the PMPI model and the I-M compensator. The results implied that the PMPI model can effectively describe the asymmetric hysteresis, and the I-M compensator can well suppress the hysteresis characteristics of PEAs.

17.
Sensors (Basel) ; 19(12)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31207984

ABSTRACT

Due to the flexible and compact structures, spherical joints are widely used in parallel manipulators and industrial robots. Real-time detection of the clearance between the ball and the socket in spherical joints is beneficial to compensate motion errors of mechanical systems and improve their transmission accuracy. This work proposes an improved capacitive sensor for detecting the micro-clearance of spherical joints. First, the structure of the capacitive sensor is proposed. Then, the mathematical model for the differential capacitance of the sensor and the eccentric micro-displacement of the ball is deduced. Finally, the capacitance values of the capacitive sensor are simulated with Ansoft Maxwell. The simulated values of the differential capacitances at different eccentric displacements agree well with the theoretical ones, indicating the feasibility of the proposed detection method. In addition, the simulated results show that the proposed capacitive sensor could effectively reduce the capacitive fringe effect, improving the measurement accuracy.

18.
Micromachines (Basel) ; 10(5)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31035523

ABSTRACT

Precision spherical joints are commonly employed as multiple degree-of-freedom (DOF) mechanical hinges in many engineering applications, e.g., robots and parallel manipulators. Real-time and precise measurement of the rotational angles of spherical joints is not only beneficial to the real-time and closed-loop control of mechanical transmission systems, but also is of great significance in the prediction and compensation of their motion errors. This work presents a novel approach for rotational angle measurement of spherical joints with a capacitive sensor. First, the 3-DOF angular motions of a spherical joint were analyzed. Then, the structure of the proposed capacitive sensor was presented, and the mathematical model for the rotational angles of a spherical joint and the capacitance of the capacitors was deduced. Finally, the capacitance values of the capacitors at different rotations were simulated using Ansoft Maxwell software. The simulation results show that the variation in the simulated capacitance values of the capacitors is similar to that of the theoretical values, suggesting the feasibility and effectiveness of the proposed capacitive detection method for rotational angles of spherical joints.

19.
Ultrasonics ; 91: 231-236, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30126724

ABSTRACT

Advanced multi-layered materials with superior performance are required for many applications. The non-destructive characterization of multi-layer properties is a hot spot of current research. The least squares inversion method using the reflection spectrum has been developed and widely used to estimate the properties of thin single layers simultaneously. However this method has the problems of a loss in speed and simplicity, and a local optimal solution, especially in the cases of a multi-layered structure because of the increasing estimated parameters and the uncertainty influence from the parameters. Particle swarm optimization (PSO) is a robust global search algorithm similar to 'bird' foraging, which can be used to improve the performance of the least squares inversion algorithm. This paper has proposed a PSO-based least squares estimation using the ultrasonic reflection spectrum to make simultaneous measurement. The simulation and experiment, carried out on the aluminum-TC4 bi-layered material, tested and proved the capability of the new algorithm. The real measured parameters and the estimated parameters were obtained. The results have been compared to analyze the errors of the estimated parameters.

20.
Sensors (Basel) ; 18(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304804

ABSTRACT

A spherical joint is a commonly used mechanical hinge with the advantages of compact structure and good flexibility, and it becomes a key component in many types of equipment, such as parallel mechanisms, industrial robots, and automobiles. Real-time detection of a precision spherical joint clearance is of great significance in analyzing the motion errors of mechanical systems and improving the transmission accuracy. This paper presents a novel method for the micro-clearance measurement with a spherical differential capacitive sensor (SDCS). First, the structure and layout of the spherical capacitive plates were designed according to the measuring principle of capacitive sensors with spacing variation. Then, the mathematical model for the spatial eccentric displacements of the ball and the differential capacitance was established. In addition, equipotential guard rings were used to attenuate the fringe effect on the measurement accuracy. Finally, a simulation with Ansoft Maxwell software was carried out to calculate the capacitance values of the spherical capacitors at different eccentric displacements. Simulation results indicated that the proposed method based on SDCS was feasible and effective for the micro-clearance measurement of the precision spherical joints with small eccentricity.

SELECTION OF CITATIONS
SEARCH DETAIL
...