Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 24(1): 521, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698377

ABSTRACT

BACKGROUND: Oral mucosal diseases are similar to the surrounding normal tissues, i.e., their many non-salient features, which poses a challenge for accurate segmentation lesions. Additionally, high-precision large models generate too many parameters, which puts pressure on storage and makes it difficult to deploy on portable devices. METHODS: To address these issues, we design a non-salient target segmentation model (NTSM) to improve segmentation performance while reducing the number of parameters. The NTSM includes a difference association (DA) module and multiple feature hierarchy pyramid attention (FHPA) modules. The DA module enhances feature differences at different levels to learn local context information and extend the segmentation mask to potentially similar areas. It also learns logical semantic relationship information through different receptive fields to determine the actual lesions and further elevates the segmentation performance of non-salient lesions. The FHPA module extracts pathological information from different views by performing the hadamard product attention (HPA) operation on input features, which reduces the number of parameters. RESULTS: The experimental results on the oral mucosal diseases (OMD) dataset and international skin imaging collaboration (ISIC) dataset demonstrate that our model outperforms existing state-of-the-art methods. Compared with the nnU-Net backbone, our model has 43.20% fewer parameters while still achieving a 3.14% increase in the Dice score. CONCLUSIONS: Our model has high segmentation accuracy on non-salient areas of oral mucosal diseases and can effectively reduce resource consumption.


Subject(s)
Mouth Diseases , Mouth Mucosa , Humans , Mouth Diseases/diagnostic imaging , Mouth Mucosa/pathology , Mouth Mucosa/diagnostic imaging , Image Processing, Computer-Assisted/methods
2.
Article in English | MEDLINE | ID: mdl-38051609

ABSTRACT

Accurate target segmentation from computed tomography (CT) scans is crucial for surgical robots to perform clinical surgeries successfully. However, the lack of medical image data and annotations has been the biggest obstacle to learning robust medical image segmentation models. Self-supervised learning can effectively address this problem by providing a strategy to pre-train a model with unlabeled data, and then fine-tune downstream tasks with limited labeled data. Existing self-supervised methods fail to simultaneously utilize the abundant global anatomical structure information and local feature differences in medical imaging. In this work, we propose a new strategy for the pre-training framework, which uses the three-dimensional anatomical structure of medical images and specific task and background cues to segment volumetric medical images with limited annotations. Specifically, we propose (1) learning intrinsic patterns of volumetric medical image structures through multiple sub-tasks, and (2) designing a multi-level background cube contrastive learning strategy to enhance the target feature representation by exploiting the differences between the specific target and background. We conduct extensive evaluations on two publicly available datasets. Under limited annotation settings, the proposed method yields significant improvements compared to other self-supervised learning techniques. The proposed method achieves within 6% of the baseline performance using only five labeled CT volumes for training. Once the paper is online, the code and dataset will be available at https://github.com/PinkGhost0812/SGL.

3.
Sensors (Basel) ; 23(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139569

ABSTRACT

Small intestinal stromal tumor (SIST) is a common gastrointestinal tumor. Currently, SIST diagnosis relies on clinical radiologists reviewing CT images from medical imaging sensors. However, this method is inefficient and greatly affected by subjective factors. The automatic detection method for stromal tumors based on computer vision technology can better solve these problems. However, in CT images, SIST have different shapes and sizes, blurred edge texture, and little difference from surrounding normal tissues, which to a large extent challenges the use of computer vision technology for the automatic detection of stromal tumors. Furthermore, there are the following issues in the research on the detection and recognition of SIST. After analyzing mainstream target detection models on SIST data, it was discovered that there is an imbalance in the features at different levels during the feature fusion stage of the network model. Therefore, this paper proposes an algorithm, based on the attention balance feature pyramid (ABFP), for detecting SIST with unbalanced feature fusion in the target detection model. By combining weighted multi-level feature maps from the backbone network, the algorithm creates a balanced semantic feature map. Spatial attention and channel attention modules are then introduced to enhance this map. In the feature fusion stage, the algorithm scales the enhanced balanced semantic feature map to the size of each level feature map and enhances the original feature information with the original feature map, effectively addressing the imbalance between deep and shallow features. Consequently, the SIST detection model's detection performance is significantly improved, and the method is highly versatile. Experimental results show that the ABFP method can enhance traditional target detection methods, and is compatible with various models and feature fusion strategies.


Subject(s)
Algorithms , Neoplasms , Humans , Recognition, Psychology , Semantics
4.
J Med Virol ; 95(3): e28594, 2023 03.
Article in English | MEDLINE | ID: mdl-36815509

Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Tropism , Eye
SELECTION OF CITATIONS
SEARCH DETAIL
...