Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(21)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38038197

ABSTRACT

Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.

2.
ACS Macro Lett ; 12(8): 1106-1111, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37470675

ABSTRACT

Strain-induced crystallization (SIC) is a well-known toughening strategy in elastomers, but is rarely observed in hydrogels due to their high-water content and limited deformability. Here we report a phenomenon of SIC in highly swollen and associative hydrogels by introducing an extremely large deformation by indentation with a needle. Using in situ birefringence imaging, we discovered that SIC occurs close to the needle tip upon large strain, displacing the nucleation of a crack from the needle tip to a position further away from the tip. The morphology of the fracture as well as the force to induce the gel fracture with the needle can be controlled by playing with temperature and cross-linking and hence triggering or not the SIC. Our discovery points to a future direction in creating SIC in highly swollen hydrogels, with potential implications for many biological material designs, and surgical injury prediction or prevention in associative tissues.

3.
Soft Matter ; 19(27): 5127-5141, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37387252

ABSTRACT

Thermoplastic elastomers (TPEs) based on multiblock copolymers are an important class of engineering polymers. They are widely used in many applications where flexibility and durability are required and are seen as a sustainable (recyclable) alternative to thermoset rubbers. While their high-temperature mechanical behavior has received recent interest, few studies have explored their fracture and fatigue behavior. Understanding how the temperature and rate-dependence of the deformation behavior at both a local and global scale influences the fatigue resistance and failure behavior is critical when designing with these materials. In this study, the failure behavior in tensile, fracture, and fatigue of well-characterized, industrially relevant, model block copoly(ether-ester) based TPEEs were evaluated over a wide range of temperatures, deformation rates, and molecular weights. Small changes in temperature or rate are shown to result in a sharp transition between a highly deformable and notch resistant response, to a more brittle and strongly notch-sensitive response. This behavior surprisingly manifests itself as a threshold strain below which the cracks do not propagate in fatigue and increasing deformation rates decreases the materials toughness in fracture tests, whereas in tensile tests the opposite is observed. The change from homogenous to inhomogeneous stress fields for tensile and fracture experiments coupled with the viscoelasticity and strain-dependent morphology of TPEs explains why a different rate dependency is observed. Strain and stress delocalization is key to achieve high toughness. Digital Image Correlation is used to measure the size and time dependence of the process zone. Comparison with micromechanical models developed for soft, elastic, and tough double network gels highlights the dominance of high strain properties for toughness and explains the strong molecular weight dependence. However, to understand the rate dependence, the characteristic times for stress transfer from the crack tip and the time to nucleate failure must be compared. The results presented in this study demonstrate the complex effect of loading conditions on the intrinsic failure mechanisms of the TPE material, and provide a first attempt at rationalizing that behavior.

4.
Nano Lett ; 23(5): 2009-2015, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36799489

ABSTRACT

Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.

5.
Phys Rev E ; 105(3-1): 034504, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35428111

ABSTRACT

Surface creasing is a common occurrence in gels under strong enough compression. The transition from smooth to creased surface has been well studied in equilibrium conditions and applied to achieve stimuli-responsive properties. Classical predictions of the creased state, assuming the gel is at equilibrium and homogeneous, are generally satisfactory, while the transient behavior in swelling gels is often far from equilibrium and is commonly heterogeneous. The short-time response is essential for materials in dynamic environments, but it remains unreported and largely unknown due to the limited temporal resolution of the techniques used so far. Here, we use spatially resolved multispeckle diffusing wave spectroscopy (MSDWS) with submicrosecond time resolution to measure the spatially dependent swelling and creasing of a constrained poly (vinyl alcohol) chemical gel in borax solutions of varying concentrations. Our high-speed imaging by MSDWS shows that the swelling behavior and mechanical response at the microscopic level can be highly heterogeneous in time and space, and is detectable hundreds of seconds before the corresponding macroscopic creasing transition. This unprecedented visualization of the heterogeneous and time-dependent behavior beyond equilibrium morphological changes unveils the full complexity of the transient material response after exposure to external stimuli and sheds light on the formation mechanism of metastable states in transient processes.

6.
Rev Sci Instrum ; 91(1): 015113, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012637

ABSTRACT

A tensile machine is designed for in situ scattering investigation of elastomers in the cyclic tensile process. The specimen is stretched by two linearly moving clamps in the opposite direction; thus, the center of the specimen is kept stationary during the tensile test. With this configuration, either X-ray scattering or neutron scattering can be carried out easily. A high speed direct current motor is used to drive the machine, providing a wide tensile speed range from 1.28 × 10-3 mm/s to 102.4 mm/s. Cyclic tension is achieved by program controlled motor rotation, and the engineering stress-strain curve can be saved automatically in each cycle. Moreover, an independent displacement sensor is used to check the possible accumulative error of position during cyclic tension. The orientation change of multiwall carbon nanotube filled silicon rubber is investigated by small angle neutron scattering to test the machine, which shows that the machine is capable of combining the cyclic tensile test with in situ scattering measurement.

7.
Soft Matter ; 13(19): 3639-3648, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28447701

ABSTRACT

Structural and morphological transitions of flow-induced crystallization (FIC) in poly(1-butene) (PB-1) melt have been studied by combining extensional rheology and in situ synchrotron radiation ultrafast wide- and small-angle X-ray scattering (WAXD/SAXS) measurements. Unexpectedly, metastable Form III is crystallized directly from the PB-1 melt by high-speed extension, which has a short lifetime of several tens of milliseconds and manifests the thermodynamic and kinetic competition among Form III, Form II and melt under flow. Relative crystallinity evolution of Form II after extension reveals a crystal melting dominated process within the observation time of 120 s even under high supercooling. This is opposite to the common case of FIC but supports the idea that flow alters the obtained crystal size and its thermodynamic stability. Additionally, a morphological transition from a flow-induced network to shish is observed by SAXS with increasing extension temperature from below to above the melting point of Form II. With above observations, we construct nonequilibrium structural and morphological diagrams of FIC in strain rate-temperature space, which may guide the industrial processing of the PB-1 material.

8.
Sci Rep ; 6: 32968, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27609305

ABSTRACT

Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

9.
Macromol Rapid Commun ; 37(17): 1441-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27376630

ABSTRACT

With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&ß coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of ß and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable ß over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out.


Subject(s)
Phase Transition , Polypropylenes/chemistry , Crystallization , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...