Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(24): 245002, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951809

ABSTRACT

Transport of high-current relativistic electron beams in dense plasmas is of interest in many areas of research. However, so far the mechanism of such beam-plasma interaction is still not well understood due to the appearance of small time- and space-scale effects. Here we identify a new regime of electron beam transport in solid-density plasma, where kinetic effects that develop on small time and space scales play a dominant role. Our three-dimensional particle-in-cell simulations show that in this regime the electron beam can evolve into layered short microelectron bunches when collisions are relatively weak. The phenomenon is attributed to a secondary instability, on the space- and timescales of the electron skin depth (tens of nanometers) and few femtoseconds of strong electrostatic modulation of the microelectron current filaments formed by Weibel-like instability of the original electron beam. Analytical analysis on the amplitude, scale length, and excitation condition of the self-generated electrostatic fields is clearly validated by the simulations.

2.
Phys Rev E ; 95(5-1): 053205, 2017 May.
Article in English | MEDLINE | ID: mdl-28618622

ABSTRACT

It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time t_{a} when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude a_{L}, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude a_{L}^{2} for a fixed parameter of n_{e}/n_{c}a_{L}. These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

3.
Phys Rev E ; 94(3-1): 033202, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739750

ABSTRACT

Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

4.
Phys Rev E ; 93: 043207, 2016 04.
Article in English | MEDLINE | ID: mdl-27176418

ABSTRACT

Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π/2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

SELECTION OF CITATIONS
SEARCH DETAIL
...