Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
2.
J Nanobiotechnology ; 22(1): 363, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910248

ABSTRACT

Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.


Subject(s)
Microscopy, Fluorescence , Humans , Microscopy, Fluorescence/methods , Erythrocytes , Animals , Blood Platelets/metabolism , Blood Cells , Hematology/methods , Nanotechnology/methods , Leukocytes/metabolism
3.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915705

ABSTRACT

Arterial thrombosis, which represents a critical complication of cardiovascular diseases, is a leading cause of death and disability worldwide with no effective bioassay for clinical prediction. As a symbolic feature of arterial thrombosis, severe stenosis in the blood vessel creates a high-shear, high-gradient flow environment that effectively facilitates platelet aggregation towards vessel occlusion even with platelet amplification loops inhibited. However, no approach is currently available to comprehensively characterize the size, composition and platelet activation status of thrombi forming under this biorheological condition. Here, we present a thrombus profiling assay that monitors the multi-dimensional attributes of thrombi forming in conditions mimicking the physiological scenario of arterial thrombosis. Using this platform, we demonstrate that different receptor-ligand interactions contribute distinctively to the composition and activation status of the thrombus. Our investigation into hypertensive and older individuals reveals intensified biomechanical thrombogenesis and multi-dimensional thrombus profile abnormalities, demonstrating a direct contribution of mechanobiology to arterial thrombosis and endorsing the diagnostic potential of the assay. Furthermore, we identify the hyperactivity of GPIbα-integrin αIIbß3 mechanosensing axis as a molecular mechanism that contributes to hypertension-associated arterial thrombosis. By studying the interactions between anti-thrombotic inhibitors and hypertension, and the inter-individual variability in personal thrombus profiles, our work reveals a critical need for personalized anti-thrombotic drug selection that accommodates each patient's pathological profile.

4.
Adv Sci (Weinh) ; : e2401524, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757670

ABSTRACT

Use of extracorporeal membrane oxygenation (ECMO) for cardiorespiratory failure remains complicated by blood clot formation (thrombosis), triggered by biomaterial surfaces and flow conditions. Thrombosis may result in ECMO circuit changes, cause red blood cell hemolysis, and thromboembolic events. Medical device thrombosis is potentiated by the interplay between biomaterial properties, hemodynamic flow conditions and patient pathology, however, the contribution and importance of these factors are poorly understood because many in vitro models lack the capability to customize material and flow conditions to investigate thrombosis under clinically relevant medical device conditions. Therefore, an ECMO thrombosis-on-a-chip model is developed that enables highly customizable biomaterial and flow combinations to evaluate ECMO thrombosis in real-time with low blood volume. It is observed that low flow rates, decelerating conditions, and flow stasis significantly increased platelet adhesion, correlating with clinical thrombus formation. For the first time, it is found that tubing material, polyvinyl chloride, caused increased platelet P-selectin activation compared to connector material, polycarbonate. This ECMO thrombosis-on-a-chip model can be used to guide ECMO operation, inform medical device design, investigate embolism, occlusion and platelet activation mechanisms, and develop anti-thrombotic biomaterials to ultimately reduce medical device thrombosis, anti-thrombotic drug use and therefore bleeding complications, leading to safer blood-contacting medical devices.

5.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605050

ABSTRACT

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Subject(s)
Protein Disulfide-Isomerases , Proteins , Thrombosis , Animals , Mice , Disulfides , Factor XII/metabolism , Heparitin Sulfate , Protein Disulfide-Isomerases/genetics , Proteins/metabolism , Thrombosis/genetics , Thrombosis/metabolism
6.
J Vis Exp ; (203)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38284529

ABSTRACT

Micropipette aspiration assays have long been a cornerstone for the investigation of live-cell mechanics, offering insights into cellular responses to mechanical stress. This paper details an innovative adaptation of the fluorescence-coupled micropipette aspiration (fMPA) assay. The fMPA assay introduces the capability to administer precise mechanical forces while concurrently monitoring the live-cell mechanotransduction processes mediated by ion channels. The sophisticated setup incorporates a precision-engineered borosilicate glass micropipette connected to a finely regulated water reservoir and pneumatic aspiration system, facilitating controlled pressure application with increments as refined as ± 1 mmHg. A significant enhancement is the integration of epi-fluorescence imaging, allowing for the simultaneous observation and quantification of cell morphological changes and intracellular calcium fluxes during aspiration. The fMPA assay, through its synergistic combination of epi-fluorescence imaging with micropipette aspiration, sets a new standard for the study of cell mechanosensing within mechanically challenging environments. This multifaceted approach is adaptable to various experimental setups, providing critical insights into the single-cell mechanosensing mechanisms.


Subject(s)
Erythrocytes , Mechanotransduction, Cellular , Mechanotransduction, Cellular/physiology , Fluorescence , Stress, Mechanical , Pressure
7.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Article in English | MEDLINE | ID: mdl-38205640

ABSTRACT

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Subject(s)
Acute Lung Injury , Macrophage-1 Antigen , Animals , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Cell Adhesion , Disulfides , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Sulfhydryl Compounds/metabolism
8.
ACS Nano ; 18(1): 299-313, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38105535

ABSTRACT

Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5ß1 and αVß3. It was found that the conformation of integrin α5ß1 is determined by a threshold head-to-tail tension. By comparison, integrin αVß3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5ß1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVß3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5ß1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVß3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5ß1 and αVß3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.


Subject(s)
Integrin alpha5beta1 , Integrins , Integrin alpha5beta1/metabolism , Integrins/metabolism , Molecular Dynamics Simulation , Integrin alphaVbeta3/metabolism
9.
Exploration (Beijing) ; 3(4): 20230004, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37933233

ABSTRACT

Mechanical forces play a vital role in biological processes at molecular and cellular levels, significantly impacting various diseases such as cancer, cardiovascular disease, and COVID-19. Recent advancements in dynamic force spectroscopy (DFS) techniques have enabled the application and measurement of forces and displacements with high resolutions, providing crucial insights into the mechanical pathways underlying these diseases. Among DFS techniques, the biomembrane force probe (BFP) stands out for its ability to measure bond kinetics and cellular mechanosensing with pico-newton and nano-meter resolutions. Here, a comprehensive overview of the classical BFP-DFS setup is presented and key advancements are emphasized, including the development of dual biomembrane force probe (dBFP) and fluorescence biomembrane force probe (fBFP). BFP-DFS allows us to investigate dynamic bond behaviors on living cells and significantly enhances the understanding of specific ligand-receptor axes mediated cell mechanosensing. The contributions of BFP-DFS to the fields of cancer biology, thrombosis, and inflammation are delved into, exploring its potential to elucidate novel therapeutic discoveries. Furthermore, future BFP upgrades aimed at improving output and feasibility are anticipated, emphasizing its growing importance in the field of cell mechanobiology. Although BFP-DFS remains a niche research modality, its impact on the expanding field of cell mechanobiology is immense.

10.
Cell Rep Methods ; 3(7): 100536, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533648

ABSTRACT

Li and colleagues have made a notable advancement in predicting cancer-associated thrombosis with a microfluidic device that monitors circulating platelet activity.1 This tool could improve the management of thrombotic events in patients with cancer, guiding timely treatment and potentially reducing mortality.


Subject(s)
Neoplasms , Thrombosis , Humans , Blood Platelets , Microfluidics , Neoplasms/complications , Thrombosis/diagnosis , Thrombosis/etiology
11.
Biomed Mater ; 18(5)2023 07 27.
Article in English | MEDLINE | ID: mdl-37451254

ABSTRACT

During the final stage of cancer metastasis, tumor cells embed themselves in distant capillary beds, from where they extravasate and establish secondary tumors. Recent findings underscore the pivotal roles of blood/lymphatic flow and shear stress in this intricate tumor extravasation process. Despite the increasing evidence, there is a dearth of systematic and biomechanical methodologies that accurately mimic intricate 3D microtissue interactions within a controlled hydrodynamic microenvironment. Addressing this gap, we introduce an easy-to-operate 3D spheroid-microvasculature-on-a-chip (SMAC) model. Operating under both static and regulated flow conditions, the SMAC model facilitates the replication of the biomechanical interplay between heterogeneous tumor spheroids and endothelium in a quantitative manner. Serving as anin vitromodel for metastasis mechanobiology, our model unveils the phenomena of 3D spheroid-induced endothelial compression and cell-cell junction degradation during tumor migration and expansion. Furthermore, we investigated the influence of shear stress on endothelial orientation, polarization, and tumor spheroid expansion. Collectively, our SMAC model provides a compact, cost-efficient, and adaptable platform for probing the mechanobiology of metastasis.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Neoplasms/pathology , Microvessels , Endothelium , Lab-On-A-Chip Devices , Tumor Microenvironment
12.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671930

ABSTRACT

Cancer cells interacting with the extracellular matrix (ECM) in the tumor microenvironment is pivotal for tumorigenesis, invasion, and metastasis. Cell-ECM adhesion has been intensively studied in cancer biology in the past decades to understand the molecular mechanisms underlying the adhesion events and extracellular mechanosensing, as well as develop therapeutic strategies targeting the cell adhesion molecules. Many methods have been established to measure the cell-ECM adhesion strength and correlate it with the metastatic potential of certain cancer types. However, those approaches are either low throughput, not quantitative, or with poor sensitivity and reproducibility. Herein, we developed a novel acoustic force spectroscopy based method to quantify the cell-ECM adhesion strength during adhesion maturation process using the emerging z-Movi® technology. This can be served as a fast, simple, and high-throughput platform for functional assessment of cell adhesion molecules in a highly predictive and reproducible manner.


Subject(s)
Neoplasms , Humans , Cell Adhesion/physiology , Reproducibility of Results , Neoplasms/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Mechanical Phenomena , Tumor Microenvironment/physiology
13.
bioRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36712101

ABSTRACT

Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 ß 1 and α V ß 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 ß 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V ß 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V ß 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V ß 3 to bend against force. Our study elucidates the different inner workings of α 5 ß 1 and α V ß 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.

14.
Adv Healthc Mater ; 12(8): e2201830, 2023 03.
Article in English | MEDLINE | ID: mdl-36521080

ABSTRACT

The mechanical stimuli generated by body exercise can be transmitted from cortical bone into the deep bone marrow (mechanopropagation). Excitingly, a mechanosensitive perivascular stem cell niche is recently identified within the bone marrow for osteogenesis and lymphopoiesis. Although it is long known that they are maintained by exercise-induced mechanical stimulation, the mechanopropagation from compact bone to deep bone marrow vasculature remains elusive of this fundamental mechanobiology field. No experimental system is available yet to directly understand such exercise-induced mechanopropagation at the bone-vessel interface. To this end, taking advantage of the revolutionary in vivo 3D deep bone imaging, an integrated computational biomechanics framework to quantitatively evaluate the mechanopropagation capabilities for bone marrow arterioles, arteries, and sinusoids is devised. As a highlight, the 3D geometries of blood vessels are smoothly reconstructed in the presence of vessel wall thickness and intravascular pulse pressure. By implementing the 5-parameter Mooney-Rivlin model that simulates the hyperelastic vessel properties, finite element analysis to thoroughly investigate the mechanical effects of exercise-induced intravascular vibratory stretching on bone marrow vasculature is performed. In addition, the blood pressure and cortical bone bending effects on vascular mechanoproperties are examined. For the first time, movement-induced mechanopropagation from the hard cortical bone to the soft vasculature in the bone marrow is numerically simulated. It is concluded that arterioles and arteries are much more efficient in propagating mechanical force than sinusoids due to their stiffness. In the future, this in-silico approach can be combined with other clinical imaging modalities for subject/patient-specific vascular reconstruction and biomechanical analysis, providing large-scale phenotypic data for personalized mechanobiology discovery.


Subject(s)
Bone Marrow , Tomography, X-Ray Computed , Humans , Bone Marrow/blood supply , Biomechanical Phenomena , Arterioles , Bone and Bones
15.
Blood Adv ; 7(10): 2117-2128, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36240294

ABSTRACT

von Willebrand factor (VWF) is the protective carrier of procoagulant factor VIII (FVIII) in the shear forces of the circulation, prolonging its half-life and delivering it to the developing thrombus. Using force spectroscopy, VWF-FVIII complex formation is characterized by catch-bond behavior in which force first decelerates then accelerates bond dissociation. Patients with mutations in VWF at the FVIII binding site phenocopies hemophilia A and the most common mutations are of cysteine residues involving multiple disulfide bonds. From differential cysteine alkylation and mass spectrometry experiments, 13 VWF disulfide bonds at the FVIII binding site were found to exist in formed and unformed states, and binding of FVIII results in partial formation of 12 of the VWF bonds. Force spectroscopy studies indicate that the VWF-FVIII bond stiffens in response to force and this feature of the interaction is ablated when VWF disulfide bonds are prevented from forming, resulting in slip-only bond behavior. Exposure of VWF to pathological fluid shear forces ex vivo and in vivo causes partial cleavage of all 13 disulfide bonds, further supporting their malleable nature. These findings demonstrate that FVIII binding to VWF involves dynamic changes in the covalent states of several VWF disulfides that are required for productive interaction in physiological shear forces.


Subject(s)
Factor VIII , von Willebrand Factor , Humans , Cysteine/chemistry , Factor VIII/chemistry , Factor VIII/metabolism , Hemophilia A/genetics , Hemostatics , Thrombosis , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
16.
RSC Chem Biol ; 3(6): 707-720, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35755187

ABSTRACT

The von Willebrand factor (VWF), by interacting with the circulatory system and platelets, harnesses hemodynamic forces to form hemostatic plugs or occlusive thrombi. The autoinhibitory modules (AIMs) flanking the VWF-A1 domain were found to contribute to its biomechanical activation. However, how AIM sequences regulate the VWF-A1 binding behavior is controversial and incompletely understood as their structures are currently unsolvable by crystallography. To address this, we first performed molecular dynamics simulations to predict the N-terminal AIM (N-AIM; residues Q1238-E1260) structure. Excitingly, we found that N-AIM could cooperate with C-AIM to form a joint Rotini-like structure, thereby partially autoinhibiting the VWF-A1-GPIbα interaction. Furthermore, we used biomembrane force probe (BFP) assays to experimentally demonstrate that the VWF-A1 containing long N-AIM sequence (1238-A1) exhibited catch-bond behavior as the force first decelerated (catch) and then accelerated (slip) the dissociation. Conversely, VWF-A1 with short N-AIM (1261-A1) displayed bi-variable behaviors with either catch (1261H-A1) or slip bonds (1261L-A1). Notably, such bi-variable transition happened at low temperatures or high pH levels, whereas Q1238-E1260 stabilized the 1238-A1 catch bond regardless of the environmental factors. The physiological study was complemented by platelet perfusion assays using microfluidics. Taken together, these studies provide new mechanobiology on how N-AIM serves as a mechano-regulator of VWF activity, which inspires future VWF-A1 dependent antithrombotic approaches.

17.
Phys Chem Chem Phys ; 24(24): 14857-14865, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35698887

ABSTRACT

von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.


Subject(s)
COVID-19 , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor , Blood Platelets , Humans , Molecular Docking Simulation , Protein Binding , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
18.
Eur Biophys J ; 51(2): 135-146, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35286429

ABSTRACT

Mechanical stimuli such as tension, compression, and shear stress play critical roles in the physiological functions of red blood cells (RBCs) and their homeostasis, ATP release, and rheological properties. Intracellular calcium (Ca2+) mobilization reflects RBC mechanosensing as they transverse the complex vasculature. Emerging studies have demonstrated the presence of mechanosensitive Ca2+ permeable ion channels and their function has been implicated in the regulation of RBC volume and deformability. However, how these mechanoreceptors trigger Ca2+ influx and subsequent cellular responses are still unclear. Here, we introduce a fluorescence-coupled micropipette aspiration assay to examine RBC mechanosensing at the single-cell level. To achieve a wide range of cell aspirations, we implemented and compared two negative pressure adjusting apparatuses: a homemade water manometer (- 2.94 to 0 mmH2O) and a pneumatic high-speed pressure clamp (- 25 to 0 mmHg). To visualize Ca2+ influx, RBCs were pre-loaded with an intensiometric probe Cal-520 AM, then imaged under a confocal microscope with concurrent bright-field and fluorescent imaging at acquisition rates of 10 frames per second. Remarkably, we observed the related changes in intracellular Ca2+ levels immediately after aspirating individual RBCs in a pressure-dependent manner. The RBC aspirated by the water manometer only displayed 1.1-fold increase in fluorescence intensity, whereas the RBC aspirated by the pneumatic clamp showed up to threefold increase. These results demonstrated the water manometer as a gentle tool for cell manipulation with minimal pre-activation, while the high-speed pneumatic clamp as a much stronger pressure actuator to examine cell mechanosensing directly. Together, this multimodal platform enables us to precisely control aspiration and membrane tension, and subsequently correlate this with intracellular calcium concentration dynamics in a robust and reproducible manner.


Subject(s)
Calcium , Erythrocyte Deformability , Calcium/metabolism , Erythrocytes , Ion Channels/metabolism , Signal Transduction
19.
Analyst ; 147(6): 1222-1235, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35212697

ABSTRACT

Microvascular thrombosis and inflammation (thromboinflammation) are major causes of morbidity and mortality in critically ill patients with limited therapeutic options. Platelets are central to thromboinflammation, and microvascular platelet thrombi are highly effective at recruiting and activating leukocytes at sites of endothelial injury. Whilst parallel-plate flow chambers, microslides and straight microchannel assays have been widely used to recapitulate leukocyte adhesive behavior on 2-dimensional (2D) surfaces, none of these methods achieve high fidelity 3-dimensional (3D) geometries emulating microvascular platelet thrombi. As a result, the role of hydrodynamic factors in regulating leukocyte interactions with platelet thrombi remains ill-defined. Here, we report a microfluidic post model that allows visualization and analysis of neutrophil-platelet interactions in a 3D flow field. We have utilized the unique mechanosensitive features of platelets to enable selective micropatterning of the 3D posts with human or mouse platelets. By modulating the activation status of platelets, our method enables precise control of platelet surface reactivity and neutrophil recruitment. In addition, our microfluidic post assay accurately recapitulated the rolling versus stationary adhesion behavior of single neutrophils and demonstrated the efficacy of the P-selectin and Mac-1 blocking antibodies to reduce neutrophil recruitment and stationary adhesion, respectively. Moreover, the geometry of posts had a major influence on the efficiency of neutrophil recruitment and adhesion stability. This new post method highlights the importance of platelet 3D geometries in facilitating efficient, localized neutrophil recruitment. These findings have potentially important implications for the potent proinflammatory function of microvascular platelet thrombi.


Subject(s)
Blood Platelets , Thrombosis , Animals , Cell Adhesion , Humans , Inflammation , Leukocytes , Mice , Microfluidics , Neutrophils
20.
Eur Biophys J ; 51(2): 119-133, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35171346

ABSTRACT

Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.


Subject(s)
Mechanical Phenomena , Proteins , Biomechanical Phenomena , Biophysics , Kinetics , Ligands , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...