Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; : 7061-7068, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950102

ABSTRACT

Electronically excited-state problems represent a crucial research field in quantum chemistry, closely related to numerous practical applications in photophysics and photochemistry. The emerging of quantum computing provides a promising computational paradigm to solve the Schrödinger equation for predicting potential energy surfaces (PESs). Here, we present a deep neural network model to predict parameters of the quantum circuits within the framework of variational quantum deflation and subspace search variational quantum eigensolver, which are two popular excited-state algorithms to implement on a quantum computer. The new machine learning-assisted algorithm is employed to study the excited-state PESs of small molecules, achieving highly accurate predictions. We then apply this algorithm to study the excited-state properties of the ArF system, which is essential to a gas laser. Through this study, we believe that with future advancements in hardware capabilities, quantum computing could be harnessed to solve excited-state problems for a broad range of systems.

2.
J Phys Chem Lett ; 15(21): 5779-5787, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38780128

ABSTRACT

Mixed perovskites show immense promise for diverse applications owing to their exceptional compositional flexibility and outstanding optoelectronic performance. Nevertheless, a significant hurdle in their widespread use is their susceptibility to compositional instability. Some mixed perovskites exhibit a tendency to segregate into regions with varying halide content, negatively impacting the material's electronic properties and impeding its overall advancement. This study focuses on investigating the lattice and A-site cation dynamics in mixed-halide perovskites as well as the relationship between the stability and dynamic properties of mixed-halide perovskites. Our findings reveal an intrinsic link between the kinetics of organic molecules and halogen ion migration. The stability of halide ions is linearly positively correlated with the radius, number of H atoms, and moment of inertia of the organic molecules. Organic molecules with lower rotational kinetics effectively suppress the overall cationic kinetic activity, enhancing lattice dynamic stability in mixed perovskite systems. This inhibition further impedes the migration of halogen ions and hinders the halide segregation process. The presence of dominant I/MA vacancies in perovskites accelerates the rotation of MA and the migration of halogen ions. The coupled dynamic behavior of varying vacancy concentrations in A-site cations/X-site anions within the inorganic framework significantly impacts the photovoltaic performance of these halide perovskites.

3.
Nat Commun ; 15(1): 2329, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485944

ABSTRACT

Intragrain impurities can impart detrimental effects on the efficiency and stability of perovskite solar cells, but they are indiscernible to conventional characterizations and thus remain unexplored. Using in situ scanning transmission electron microscopy, we reveal that intragrain impurity nano-clusters inherited from either the solution synthesis or post-synthesis storage can revert to perovskites upon irradiation stimuli, leading to the counterintuitive amendment of crystalline grains. In conjunction with computational modelling, we atomically resolve crystallographic transformation modes for the annihilation of intragrain impurity nano-clusters and probe their impacts on optoelectronic properties. Such critical fundamental findings are translated for the device advancement. Adopting a scanning laser stimulus proven to heal intragrain impurity nano-clusters, we simultaneously boost the efficiency and stability of formamidinium-cesium perovskite solar cells, by virtual of improved optoelectronic properties and relaxed intra-crystal strain, respectively. This device engineering, inspired and guided by atomic-scale in situ microscopic imaging, presents a new prototype for solar cell advancement.

4.
Nat Commun ; 15(1): 138, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167836

ABSTRACT

The past decade has witnessed the significant efforts in novel material discovery in the use of data-driven techniques, in particular, machine learning (ML). However, since it needs to consider the precursors, experimental conditions, and availability of reactants, material synthesis is generally much more complex than property and structure prediction, and very few computational predictions are experimentally realized. To solve these challenges, a universal framework that integrates high-throughput experiments, a priori knowledge of chemistry, and ML techniques such as subgroup discovery and support vector machine is proposed to guide the experimental synthesis of materials, which is capable of disclosing structure-property relationship hidden in high-throughput experiments and rapidly screening out materials with high synthesis feasibility from vast chemical space. Through application of our approach to challenging and consequential synthesis problem of 2D silver/bismuth organic-inorganic hybrid perovskites, we have increased the success rate of the synthesis feasibility by a factor of four relative to traditional approaches. This study provides a practical route for solving multidimensional chemical acceleration problems with small dataset from typical laboratory with limited experimental resources available.

5.
J Phys Chem Lett ; 14(36): 8034-8042, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37651711

ABSTRACT

With reduced toxicity and tunable optoelectronic properties, mixed cation halide perovskites (MCHPs) featuring partially substituted Pb with Sn and Ge have emerged as promising candidates for photovoltaic applications. However, the introduction of the disorder through large-scale preparation and alloying strategies leads to a significant challenge in comprehending the disorder's microscopic-level impact. Here, we found that, in addition to compositional variation, a synergy of disorder and cation radii ratio significantly affects optoelectronic properties. For Pb-Ge/Ge-Sn MCHPs, severe octahedral distortion with increasing degree of disorder adjusted their bandgaps in a wide range, giving rise to large effective masses, exciton binding energies, and weak visible absorption coefficients. The synergy of disorder and distortion transforms the Wannier excitons into localized characteristics, whereas the optoelectronic properties of Pb-Sn MCHPs are modulated by the disorder. Our work highlights the role of disorder in the tunability of optoelectronic properties, providing a novel strategy for designing photovoltaic materials.

6.
Angew Chem Int Ed Engl ; 62(18): e202213386, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36867355

ABSTRACT

Tin organic-inorganic halide perovskites (tin OIHPs) possess a desirable band gap and their power conversion efficiency (PCE) has reached 14 %. A commonly held view is that the organic cations in tin OIHPs would have little impact on the optoelectronic properties. Herein, we show that the defective organic cations with randomly dynamic characteristics can have marked effect on optoelectronic properties of the tin OIHPs. Hydrogen vacancies originated from the proton dissociation from FA [HC(NH2 )2 ] in FASnI3 can induce deep transition levels in the band gap but yield relatively small nonradiative recombination coefficients of 10-15  cm3 s-1 , whereas those from MA (CH3 NH3 ) in MASnI3 can yield much larger nonradiative recombination coefficients of 10-11  cm3 s-1 . Additional insight into the "defect tolerance" is gained by disentangling the correlations between dynamic rotation of organic cations and charge-carrier dynamics.

7.
Mater Horiz ; 10(5): 1678-1688, 2023 May 09.
Article in English | MEDLINE | ID: mdl-36809540

ABSTRACT

The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, with high external quantum efficiencies exceeding 20%. However, the deployment of PeLEDs in commercial devices still faces severe challenges, such as environmental pollution, instability and low photoluminescence quantum yields (PLQYs). In this work, we perform high-throughput calculations to exhaustively search the unexplored and eco-friendly novel antiperovskite space (formula: X3B[MN4], with octahedron [BX6] and tetrahedron [MN4]). The novel antiperovskites have a unique structure whereby a tetrahedron can be embedded into an octahedral skeleton as a light-emitting center causing a space confinement effect, leading to the characteristics of a low-dimensional electronic structure, which then makes these materials potential light-emitting material candidates with a high PLQY and light-emitting stability. Under the guidance of newly derived tolerance, octahedral, and tetrahedral factors, 266 stable candidates are successfully screened out from 6320 compounds. Moreover, the antiperovskite materials Ba3I0.5F0.5(SbS4), Ca3O(SnO4), Ba3F0.5I0.5(InSe4), Ba3O0.5S0.5(ZrS4), Ca3O(TiO4), and Rb3Cl0.5I0.5(ZnI4) possess an appropriate bandgap, thermodynamic and kinetic stability, and excellent electronic and optical properties, making them promising light-emitting materials.

8.
Adv Mater ; 35(15): e2211155, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36688433

ABSTRACT

Optomechanical reliability has emerged as an important criterion for evaluating the performance and commercialization potential of perovskite solar cells (PSCs) due to the mechanical-property mismatch of metal halide perovskites with other device layer. In this work, grain-boundary grooves, a rarely discussed film microstructural characteristic, are found to impart significant effects on the optomechanical reliability of perovskite-substrate heterointerfaces and thus PSC performance. By pre-burying iso-butylammonium chloride additive in the electron-transport layer (ETL), GB grooves (GBGs) are flattened and an optomechanically reliable perovskite heterointerface that resists photothermal fatigue is created. The improved mechanical integrity of the ETL-perovskite heterointerfaces also benefits the charge transport and chemical stability by facilitating carrier injection and reducing moisture or solvent trapping, respectively. Accordingly, high-performance PSCs which exhibit efficiency retentions of 94.8% under 440 h damp heat test (85% RH and 85 °C), and 93.0% under 2000 h continuous light soaking are achieved.

9.
Mater Horiz ; 9(9): 2450-2459, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35880616

ABSTRACT

Chirality, an intrinsic property of nature, has received increased attention in chemistry, biology, and materials science because it can induce optical rotation, ferroelectricity, nonlinear optical response, and other unique properties. Here, by introducing chirality into hybrid rare-earth double perovskites (HREDPs), we successfully designed and synthesized a pair of enantiomeric three-dimensional (3D) HREDPs, [(R)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (R1) and [(S)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (S1), which possess ferroelasticity, multiaxial ferroelectricity, high quantum yields (84.71% and 83.55%, respectively), and long fluorescence lifetimes (5.404 and 5.256 ms, respectively). Notably, the introduction of chirality induces the coupling of multiaxial ferroelectricity and ferroelasticity, which brings about a satisfactory large piezoelectric response (103 and 101 pC N-1 for R1 and S1, respectively). Moreover, in combination with the chirality and outstanding photoluminescence properties, circularly polarized luminescence (CPL) was first realized in HREDPs. This work sheds light on the design strategy of molecule-based materials with a large piezoelectric response and excellent CPL activity, and will inspire researchers to further explore the role of chirality in the construction of novel multifunctional materials.

10.
J Phys Chem Lett ; 13(1): 362-370, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34985292

ABSTRACT

Adding alkali metal in organic-inorganic halide perovskites effectively improves its photovoltaic performance, while excessive alkali metal incorporation would produce a detrimental effect. Through density functional theory and nonadiabatic molecular dynamics simulations, we demonstrate how and why the photogenerated carrier lifetime mutates with the increase of alkali metal concentration. A small amount of Rb doping in the lattice introduces a slight distortion of the octahedron, reducing the overlap of frontier orbitals and decreasing the nonadiabatic coupling, effectively enhancing the photogenerated carrier lifetime. In contrast, excessive Rb will introduce defect states, resulting in the low carrier lifetime by a factor of 2-3 orders of magnitude. Strikingly, the surface formamidinium (FA) cations exhibit unexpected responsibility for the carrier dynamics since its high-frequency thermal vibration strongly leads to the ultrafast hole trapping and carrier recombination. Our results provide new insight into the concentration-dependent photovoltaic performance of alkali metal cations in organic-inorganic halide perovskites.

11.
JACS Au ; 1(4): 475-483, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34467310

ABSTRACT

The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of ∼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.

12.
Nanoscale ; 13(28): 12250-12259, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34241606

ABSTRACT

Mixed double halide organic-inorganic perovskites (MDHOIPs) exhibit both good stability and high power conversion efficiency and have been regarded as attractive photovoltaic materials. Nevertheless, due to the complexity of structures, large-scale screening of thousands of possible candidates remains a great challenge. In this work, advanced machine learning (ML) techniques and first-principles calculations were combined to achieve a rapid screening of MDHOIPs for solar cells. Successfully, 204 stable lead-free MDHOIPs with optimal bandgaps were selected out of 11 370 candidates. The accuracy of ML models for perovskite structure formability and bandgap is over 94% and 97%, respectively. Moreover, representative MDHOIP candidates, MA2GeSnI4Br2 and MA2InBiI2Br4, stand out with suitable direct bandgaps, light carrier effective masses, small exciton binding energies, strong visible light absorption, and good stability against decomposition.

13.
Phys Chem Chem Phys ; 22(36): 20553-20561, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966444

ABSTRACT

It has been experimentally demonstrated that mixed metallic cation modification could be an effective strategy to enhance the performance and stability of perovskite-based solar cells (PSCs). However, there is limited microscopic understanding at the atomic/molecular level of the behavior of small radius alkali metal cation doping in both perovskite materials and perovskite/TiO2 junctions. Here, we perform a first-principles density functional theory study on the doping-induced variation of the geometric and electronic structures of MAPbI3 (MA = methylammonium) and the MAPbI3/TiO2 junction. The impacts of different doping methods, and different charge states and locations of the given dopants have been investigated. At first, we theoretically confirm that the structures doped by K+ are the most thermally stable compared to the structures doped by the other charge states of K, and that K+ dopants prefer to modify the perovskite lattice interstitially and stay near the MAPbI3/TiO2 interface. Meanwhile, we find that a severe geometric deformation occurs if two doped lattices come into contact directly, indicating that the lattice may rapidly collapse from the interior if the doping concentration is too high. Additionally, we observe that K+ doped interstitially near the MAPbI3/TiO2 interface causes the intensive distortion of the surface Ti-O bonds and severe bond-length fluctuations. Consequently, this results in distorted TiO2 bands of the interfacial layer and a slight decrease of the band offset of conduction bands between two phases. This work complements experiments and provides a better microscopic understanding of the doping modification of the properties of perovskite materials and PSCs.

14.
Nanoscale Adv ; 2(2): 770-776, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-36133252

ABSTRACT

Solar cells made of low-cost solution-processed all-inorganic materials are a promising alternative to conventional solar cells made of high-temperature processed inorganic materials, especially because many high-temperature processed inorganic materials contain toxic element(s) such as lead or cadmium (e.g., CsPbI3 perovskite, PbS, CdTe and CdS(Se)). AgBiS2 nanocrystals, consisting of earth-abundant elements but without lead and cadmium, have already emerged as a promising candidate in high-performance solar cells. However, the nanoscale morphology-optoelectronic property relationship for AgBiS2 nanocrystals is still largely unknown. Herein, we investigate the electronic properties of various AgBiS2 nanocrystals by using first-principles computation. We show that the optoelectronic properties of bulk AgBiS2 are highly dependent on the M-S-M-S- (M: Ag or Bi) orderings. Moreover, because Ag-S-Ag-S- and Bi-S-Bi-S- in AgBiS2 bulk crystals contribute respectively to the valence band maximum and conduction band minimum, these unique chemical orderings actually benefit easy separation of mobile electrons and holes for photovoltaic application. More importantly, we find that AgBiS2 nanocrystals (NCs) can exhibit markedly different optoelectronic properties, depending on their stoichiometry. NCs with minor off-stoichiometry give rise to mid-gap states, whereas NCs with substantial off-stoichiometry give rise to many deep defect states in the band gap, and some NCs even show metallic-like electronic behavior. We also find that the deep-defect states can be removed through ligand passivation with optimal coverage. The new insights into the nanoscale morphology-optoelectronic property relationship offer a rational design strategy to engineer the band alignment of AgBiS2 NC layers while addressing some known challenging issues inherent in all-inorganic photovoltaic materials.

15.
Nat Commun ; 10(1): 16, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604757

ABSTRACT

There has been an urgent need to eliminate toxic lead from the prevailing halide perovskite solar cells (PSCs), but the current lead-free PSCs are still plagued with the critical issues of low efficiency and poor stability. This is primarily due to their inadequate photovoltaic properties and chemical stability. Herein we demonstrate the use of the lead-free, all-inorganic cesium tin-germanium triiodide (CsSn0.5Ge0.5I3) solid-solution perovskite as the light absorber in PSCs, delivering promising efficiency of up to 7.11%. More importantly, these PSCs show very high stability, with less than 10% decay in efficiency after 500 h of continuous operation in N2 atmosphere under one-sun illumination. The key to this striking performance of these PSCs is the formation of a full-coverage, stable native-oxide layer, which fully encapsulates and passivates the perovskite surfaces. The native-oxide passivation approach reported here represents an alternate avenue for boosting the efficiency and stability of lead-free PSCs.

16.
J Am Chem Soc ; 140(33): 10456-10463, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30043607

ABSTRACT

Low-dimensional organic-inorganic halide perovskites (OIHPs) have attracted intense interest recently for photovoltaic applications, due to their markedly high chemical stability as compared to the widely studied three-dimensional (3D) counterparts. However, low-dimensional OIHPs usually give much lower device performance than the 3D OIHPs. In particular, for the zero-dimensional (0D) OIHPs, it is believed that the strong intrinsic quantum-confinement effects can lead to extremely low carrier motility, which can severely limit the photovoltaic performance. Herein, we predict a new family of 0D perovskite variants that, surprisingly, exhibit outstanding optoelectronic properties. We show that the "atypical" carrier mobility of these new 0D perovskites is attributed to the strong electronic interaction between neighboring octahedrons in the crystal. These findings also suggest a new materials design strategy for resolving the low-performance issue commonly associated with the low-dimensional OIHPs for photovoltaic applications.

17.
Nanoscale ; 10(24): 11314-11319, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29897093

ABSTRACT

Despite their high power conversion efficiency, the commercial applications of hybrid organic-inorganic lead (Pb) halide perovskite based solar cells are still hampered by concerns about the toxicity of Pb and the structural stability in open air. Herein, based on density-functional theory computation, we show that lead-free tin (Sn) and germanium (Ge) based two-dimensional (2D) Ruddlesden-Popper hybrid organic-inorganic perovskites with a thickness of a few unit-cells, BA2MAn-1MnI3n+1 (M = Sn or Ge, n = 2-4), possess desirable electronic, excitonic and light absorption properties, thereby showing promise for photovoltaic and/or photoelectronic applications. In particular, we show that by increasing the layer thickness of the Sn-based 2D perovskites, the bandgap can be lowered towards the optimal range (0.9-1.6 eV) for solar cells. Meanwhile, the exciton binding energy is reduced to a more optimal value. In addition, theoretical assessment indicates that the thermodynamic stability of Sn-/Ge-based 2D perovskites is notably enhanced compared to that of their 3D analogues. These features render the Sn-/Ge-based 2D hybrid perovskites with a thickness of a few tens of unit cells promising lead-free perovskites with much improved structural stabilities for photovoltaic and/or photoelectronic applications.

18.
Phys Chem Chem Phys ; 20(4): 2637-2645, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29319076

ABSTRACT

Combining the best of different monolayers in one ultimate van der Waals (vdW) heterostructure is an appealing approach for practical applications. Recently, a graphene (GR) and molybdenum diselenide (MoSe2) heterobilayer was successfully fabricated experimentally. The superior electrical conductivity of GR combined with the unique photoelectrical properties and direct bandgap of MoSe2 can yield many potential applications, such as Li-ion batteries, tunneling field effect transistors and two-dimensional non-volatile memory devices. Efficient heat conduction within the device components is of great importance for nanoelectronic performance. In this work, the cross-plane interfacial thermal resistance (R) and in-plane thermal conductivity (κ) of the GR/MoSe2 vdW heterobilayer are systematically investigated using classical molecular dynamics (MD) simulations. The predicted R at a temperature of 300 K is equal to 1.91 × 10-7 K m2 W-1. Effects of several modulators such as temperature, contact pressure and vacancy defects are evaluated, which are all found to have negative correlations with the calculated interfacial thermal resistance. The highest reduction of R amounts to 75% for doubled coupling strength between GR and MoSe2. Spectral energy density (SED) and phonon density of states (Ph-DOS) analyses are performed to gain further insights into the phonon properties of GR and MoSe2. Our study provides reasonable guidelines to increase heat dissipation efficiency for future GR/MoSe2 based applications.

19.
Angew Chem Int Ed Engl ; 56(41): 12658-12662, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28671739

ABSTRACT

The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single-phase hybrid perovskites of (FAPbI3 )1-x (CsSnI3 )x (0

20.
J Am Chem Soc ; 139(23): 8038-8043, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28537073

ABSTRACT

The power-conversion efficiency (PCE) of lead halide perovskite photovoltaics has reached 22.1% with significantly improved structural stability, thanks to a mixed cation and anion strategy. However, the mixing element strategy has not been widely seen in the design of lead-free perovskites for photovoltaic application. Herein, we report a comprehensive study of a series of lead-free and mixed tin and germanium halide perovskite materials. Most importantly, we predict that RbSn0.5Ge0.5I3 possesses not only a direct bandgap within the optimal range of 0.9-1.6 eV but also a desirable optical absorption spectrum that is comparable to those of the state-of-the-art methylammonium lead iodide perovskites, favorable effective masses for high carrier mobility, as well as a greater resistance to water penetration than the prototypical inorganic-organic lead-containing halide perovskite. If confirmed in the laboratory, this new lead-free inorganic perovskite may offer great promise as an alternative, highly efficient solar absorber material for photovoltaic application.

SELECTION OF CITATIONS
SEARCH DETAIL
...