Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(13): e2207121, 2023 May.
Article in English | MEDLINE | ID: mdl-36828783

ABSTRACT

Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two. If these WPs are located at the Fermi level, they form an ideal Weyl semimetal (WSM). In this study, intrinsic ferromagnetic (FM) EuCd2 As2 are grown, predicted to be an ideal WSM and studied its electronic structure by angle-resolved photoemission spectroscopy, and scanning tunneling microscopy which agrees closely with the first principles calculations. Moreover, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature, and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings can help realize several exotic quantum phenomena in inorganic topological materials that are otherwise difficult to assess because of the presence of multiple pairs of Weyl nodes.

2.
Nat Phys ; 18(10): 1228-1233, 2022.
Article in English | MEDLINE | ID: mdl-36217362

ABSTRACT

Cooper pairs in non-centrosymmetric superconductors can acquire finite centre-of-mass momentum in the presence of an external magnetic field. Recent theory predicts that such finite-momentum pairing can lead to an asymmetric critical current, where a dissipationless supercurrent can flow along one direction but not in the opposite one. Here we report the discovery of a giant Josephson diode effect in Josephson junctions formed from a type-II Dirac semimetal, NiTe2. A distinguishing feature is that the asymmetry in the critical current depends sensitively on the magnitude and direction of an applied magnetic field and achieves its maximum value when the magnetic field is perpendicular to the current and is of the order of just 10 mT. Moreover, the asymmetry changes sign several times with an increasing field. These characteristic features are accounted for by a model based on finite-momentum Cooper pairing that largely originates from the Zeeman shift of spin-helical topological surface states. The finite pairing momentum is further established, and its value determined, from the evolution of the interference pattern under an in-plane magnetic field. The observed giant magnitude of the asymmetry in critical current and the clear exposition of its underlying mechanism paves the way to build novel superconducting computing devices using the Josephson diode effect.

3.
Nat Commun ; 13(1): 2220, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468883

ABSTRACT

The recently discovered layered kagome metals AV3Sb5 (A = K, Rb, Cs) exhibit diverse correlated phenomena, which are intertwined with a topological electronic structure with multiple van Hove singularities (VHSs) in the vicinity of the Fermi level. As the VHSs with their large density of states enhance correlation effects, it is of crucial importance to determine their nature and properties. Here, we combine polarization-dependent angle-resolved photoemission spectroscopy with density functional theory to directly reveal the sublattice properties of 3d-orbital VHSs in CsV3Sb5. Four VHSs are identified around the M point and three of them are close to the Fermi level, with two having sublattice-pure and one sublattice-mixed nature. Remarkably, the VHS just below the Fermi level displays an extremely flat dispersion along MK, establishing the experimental discovery of higher-order VHS. The characteristic intensity modulation of Dirac cones around K further demonstrates the sublattice interference embedded in the kagome Fermiology. The crucial insights into the electronic structure, revealed by our work, provide a solid starting point for the understanding of the intriguing correlation phenomena in the kagome metals AV3Sb5.

4.
J Phys Chem Lett ; 9(22): 6421-6425, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30351949

ABSTRACT

Monolayer transition metal dichalcogenides (TMDs) constitute an important family of materials with many intriguing properties and applications. The ability to achieve large-size and high-quality monolayer TMDs is the key prerequisite toward a deep understanding and practical application of TMDs in electronics and optoelectronics. Here, on the basis of high-resolution angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we find a monolayer NbS2-dominated Fermi-level feature in a misfit compound, which is a type of natural heterostructures. Considering the infrequency of the synthesis approach and electronic properties of the NbS2 monolayer, our results cannot only provide direct insight into the electronic structure of van der Waals heterostructures (VDWHs) but also shed light on the way toward rationally investigating  the monolayer TMDs, which are hardly obtained and studied.

5.
Adv Mater ; 30(2)2018 Jan.
Article in English | MEDLINE | ID: mdl-29178538

ABSTRACT

The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi4 Te6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...