Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686745

ABSTRACT

Mori Folium (Morus alba leaf, MF) and Mori Cortex Radicis (Morus alba root cortex, MR) have been studied for their anti-obesity effects by enhancing the browning process and inhibiting adipogenesis. However, important aspects of their protective mechanisms have not been thoroughly investigated, which could aid in developing functional food. Thus, this study aims to determine the synergistic effects of MF and MR against obesity and its associated mechanisms. In an in vitro cell culture model of brown adipocytes, a 1:1 mixture of MF and MR showed a synergistic effect on the expression of brown adipocyte-specific genes, including Ucp-1, Ppargc1a, Cbp/p300-interacting transactivator (Cited), Prdm16, Tbx1, and Fgf21 compared with either MF- or MR-treated conditions. Moreover, they demonstrated the involvement of cAMP and Ca2+ in induction of brown adipocyte-specific genes. In an in vivo model using HFD-fed mice, MF/MR significantly inhibited weight gain, plasma cholesterol, LDL, TG content, fat mass, and adipocyte size. Furthermore, MF/MR inhibited morphological alteration and the expressions of fatty acid synthesis genes such as Srebp1 and Fasn in the white adipose tissue. Thermogenesis genes were recovered in the brown adipose tissue with MF/MR supplementation, indicating that MF/MR regulated adipocytic dysmetabolism where AMPK signaling is involved. In conclusion, these results suggested that MF/MR regulates brown and beige adipocyte processes, providing one of the preventive functional food/herbal medicines against obesity and its associated metabolic diseases.


Subject(s)
Adipocytes, Brown , Obesity , Animals , Mice , Obesity/genetics , Weight Gain , Adipose Tissue, Brown
2.
Nutrients ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375680

ABSTRACT

Activating brown adipose tissue (BAT) and stimulating white adipose tissue (WAT) browning is a prospective obesity treatment method. Dietary components derived from plants are the most effective approach to activate BAT and promote WAT browning in rodents. This study investigated the synergistic effects of Panax ginseng (PG) and Diospyros kaki leaf (DKL) extract on adipocyte differentiation and browning, as well as the molecular mechanism underlying their beneficial effects. The administration of PG and DKL to HFD-induced obese mice significantly decreased body weight and epididymal and abdominal adipose tissue mass. In in vitro, PG inhibited the adipogenesis of 3T3-L1 adipocytes by regulating the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, DKL negligibly influenced the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of UCP-1, PGC-1α, and PPARα in BAT and/or WAT. Moreover, PG and DKL inhibited adipogenesis synergistically and activated white adipocyte browning via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These results suggest that a combination of PG and DKL regulates adipogenesis in white adipocytes and browning in brown adipocytes by activating AMPK/SIRT1 axis. The potential use of PG and DKL may represent an important strategy in obesity management that will be safer and more effective.


Subject(s)
Diospyros , Panax , Mice , Animals , Adipocytes, White , AMP-Activated Protein Kinases/metabolism , Panax/chemistry , Sirtuin 1/metabolism , Prospective Studies , Adipogenesis , PPAR gamma/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Plant Leaves/metabolism , 3T3-L1 Cells
3.
Antioxidants (Basel) ; 12(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37107213

ABSTRACT

Morus bombycis has a long history of usage as a treatment for metabolic diseases, especially, diabetes mellitus (DM). Thus, we aimed to isolate and evaluate bioactive constituents derived from M. bombycis leaves for the treatment of DM. According to bioassay-guided isolation by column chromatography, eight compounds were obtained from M. bombycis leaves: two phenolic compounds, p-coumaric acid (1) and chlorogenic acid methyl ester (2), one stilbene, oxyresveratrol (3), two stilbene dimers, macrourin B (4) and austrafuran C (6), one 2-arylbenzofuran, moracin M (5), and two Diels-Alder type adducts, mulberrofuran F (7) and chalcomoracin (8). Among the eight isolated compounds, the anti-DM activity of 3-8 (which possess chemotaxonomic significance in Morus species) was evaluated by inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation as well as by scavenging peroxynitrite (ONOO-), which are crucial therapeutic targets of DM and its complications. Compounds 4 and 6-8 significantly inhibited α-glucosidase, PTP1B, and HRAR enzymes with mixed-type and non-competitive-type inhibition modes. Furthermore, the four compounds had low negative binding energies in both enzymes according to molecular docking simulation, and compounds 3-8 exhibited strong antioxidant capacity by inhibiting AGE formation and ONOO- scavenging. Overall results suggested that the most active stilbene-dimer-type compounds (4 and 6) along with Diels-Alder type adducts (7 and 8) could be promising therapeutic and preventive resources against DM and have the potential to be used as antioxidants, anti-diabetic agents, and anti-diabetic complication agents.

4.
Tissue Eng Regen Med ; 13(4): 428-436, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30603424

ABSTRACT

Oral epithelial-mesenchymal interactions play a key role in tooth development and assist differentiation of dental pulp. Many epithelial and mesenchymal factors in the microenvironment influence dental pulp stem cells to differentiate and regenerate. To investigate the interaction between oral cells during differentiation, we designed a microfluidic device system for indirect co-culture. The system has several advantages, such as consumption of low reagent volume, high-throughput treatment of reagents, and faster mineralization analysis. In this study, stem cells from human exfoliated deciduous teeth were treated with media cultured with human gingival fibroblasts or periodontal ligament stem cells. When human exfoliated deciduous teeth was incubated in media cultured in human gingival fibroblasts and human periodontal ligament stem cells under the concentration gradient constructed by the microfluidic system, no remarkable change in human exfoliated deciduous teeth mineralization efficiency was detected. However, osteoblast gene expression levels in human exfoliated deciduous teeth incubated with human gingival fibroblasts media decreased compared to those in human exfoliated deciduous teeth treated with human periodontal ligament stem cells media, suggesting that indirect co-culture of human exfoliated deciduous with human gingival fibroblasts may inhibit osteogenic cytodifferentiation. This microfluidic culture device allows a co-culture system set-up for sequential treatment with co-culture media and differentiation additives and facilitated the mineralization assay in a micro-culture scale.

5.
J Toxicol Environ Health A ; 78(16): 1063-72, 2015.
Article in English | MEDLINE | ID: mdl-26241707

ABSTRACT

A lab-on-a-chip (LOC) is a microfluidic device (MFD) that integrates several lab functions into a single chip of only millimeters in size. LOC provides several advantages, such as low fluidic volumes consumption, faster analysis, compactness, and massive parallelization. These properties enable a microfluidic-based high-throughput drug screening (HTDS) system to acquire cell-based abundant cytotoxicity results depending on linear gradient concentration of drug with only few hundreds of microliters of the drug. Therefore, a microfluidic device was developed containing an array of eight separate microchambers for cultivating HepG2 cells to be exposed to eight different concentrations of acetaminophen (APAP) through a diffusive-mixing-based concentration gradient generator. Every chamber array with eight different concentrations (0, 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, or 40 mM) APAP had four replicating cell culture chambers. Consequently, 32 experimental results were acquired with a single microfluidic device experiment. The microfluidic high-throughput cytotoxicity device (µHTCD) and 96-well culture system showed comparable cytotoxicity results with increasing APAP concentration of 0 to 40 mM. The HTDS system yields progressive concentration-dependent cytotoxicity results using minimal reagent and time. Data suggest that the HTDS system may be applicable as alternative method for cytotoxicity screening for new drugs in diverse cell types.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , High-Throughput Screening Assays/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Dose-Response Relationship, Drug , Hep G2 Cells , High-Throughput Screening Assays/instrumentation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...