Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1896-1904, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812202

ABSTRACT

This study aims to analyze the constituents of Jiaotai Pills migrating to the blood in normal rats by UHPLC-TOF-MS technique and reveal the underlying mechanism of Jiaotai Pills in the treatment of depression by network pharmacology and animal experiments. UHPLC-TOF-MS technique was used to detect the constituents of Jiaotai Pills in the blood of rats after intragastric administration. The intersection target of the constituents and depression was screened by DisGeNET and SwissTargetPrediction database, and the protein-protein interaction(PPI) network was constructed. Key targets were imported into the DAVID platform for Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway annotation. Combined with constituents, targets, and pathways, the "constituent-target-pathway" network was constructed by Cytoscape 3.9.1 software, through which the key targets and pathways of Jiaotai Pills against depression were predicted. The depression model of chronic unpredictable mild stress(CUMS) was established on rats. After that, behavioral experiments were conducted. The expression of inflammatory factors in serum and the neurotransmitters in the brain were detected by ELISA, and the expression of key targets in the hippocampus was detected by Western blot. The results showed that a total of 17 constituents of Jiaotai Pills were identified in the blood, including 10 alkaloids. There were 124 intersection targets between constituents of Jiaotai Pills and depression disorder. A total of 52 core targets were screened according to PPI results, including NLRP3 and caspase-1, etc. KEGG enrichment analysis mainly involved 15 typical pathways such as NOD-like receptor pathway. The results of animal experiments showed that Jiaotai Pills significantly improved the depression-like behavior of CUMS depressive model on rats, decreased the levels of IL-1ß, TNF-α and IL-6 in serum, and increased the expression of neurotransmitters such as 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in the brain. Besides, Jiaotai Pills also down-regulated the expression of NLRP3 and caspase-1 proteins in the hippocampus and inhibited the NLRP3-mediated NOD-like receptor signaling pathway. In conclusion, Jiaotai Pills may play a role in the treatment of depression by inhibiting the NLRP3 inflammasome and the NOD-like receptor pathway mediated by NLRP3.


Subject(s)
Depression , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Depression/drug therapy , Depression/genetics , Depression/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Protein Interaction Maps , Mass Spectrometry , Humans , Hippocampus/drug effects , Hippocampus/metabolism
2.
Article in English | MEDLINE | ID: mdl-38655853

ABSTRACT

BACKGROUND AND AIM: Depression is highly prevalent in patients with inflammatory bowel disease (IBD), which may affect the prognosis of IBD. This aimed to investigate the impact of depression on prognosis in IBD. METHODS: A systematic literature search was performed in four databases (Medline, Embase, Web of Science, and PsycINFO) up to December 31, 2023. Studies were included if they investigated the impact of depression on prognosis in IBD. The primary outcome was flare in IBD, and secondary outcomes were hospitalization, readmission, emergency visits, surgery, and escalation of medical therapy. Relative risks (RRs) were utilized to estimate the risk in each of the above prognostic indicators. RESULTS: Fourteen cohort and 10 case-control studies matched our entry criteria, comprising 630 408 patients with IBD. Twenty-two of included studies were considered to have a low risk of bias. Depression was found to significantly increase the risk of flare (RR = 1.37, 95% CI 1.16-1.63), hospitalization (RR = 1.11, 95% CI 1.00-1.23), readmission (RR = 1.32, 95% CI 1.04-1.67), emergency visits (RR = 1.33, 95% CI 1.12-1.59), surgery (1.38, 95% CI 1.08-1.76), and escalation of medical therapy (RR = 1.38, 95% CI 1.13-1.69) in IBD. Of note, patients with depression in ulcerative colitis had significant differences in readmission (RR = 1.38, 95% CI 1.19-1.60) and escalation of medical therapy (RR = 1.78, 95% CI 1.55-2.04). Additionally, the association was observed in patients with Crohn's disease in terms of flare (RR = 1.47, 95% CI 1.08-2.01) and hospitalization (RR = 1.20, 95% CI 1.03-1.40). CONCLUSIONS: Current evidence suggested that depression could significantly increase the risk of poor prognosis worsening in patients with IBD. However, the association varied in IBD subtypes.

3.
Ann Med Surg (Lond) ; 86(1): 172-189, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222693

ABSTRACT

Background: Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods: Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results: One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions: This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.

4.
Zhongguo Zhong Yao Za Zhi ; 48(1): 183-192, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725270

ABSTRACT

This study aims to explore the anti-depression mechanism of Zuojin Pills based on the plasma constituents, network pharmacology, and experimental verification. UHPLC-TOF-MS was used for qualitative analysis of Zuojin Pills-containing serum. Targets of the plasma constituents and the disease were retrieved from PharmMapper and GeneCards. Then the protein-protein interaction(PPI) network was constructed and core targets were screened for GO term enrichment and KEGG pathway enrichment. Cytoscape 3.7.2 was employed construct the "compound-target-pathway" network and the targets and signaling pathways of Zuojin Pills against depression were predicted. CUMS-induced depression mouse model was established to verify the key targets. The results showed that a total of 21 constituents migrating to blood of Zuojin Pills were identified, which were mainly alkaloids. A total of 155 common targets of the constituents and the disease and 67 core targets were screened out. KEGG enrichment and PPI network analysis showed that Zuojin Pills may play a role in the treatment of depression through AMPK/SIRT1, NLRP3, insulin and other targets and pathways. Furthermore, the results of animal experiments showed that Zuojin Pills could significantly improve the depression behaviors of depression, reduce the levels of IL-1ß, IL-6 and TNF-α in hippocampus and serum, activate AMPK/SIRT1 signaling, and reduce the protein expression of NLRP3. In conclusion, Zuojin Pills may play a role in the treatment of depression by activating AMPK/SIRT1 signaling pathway, and inhibiting NLRP3 activation and neuroinflammation in the hippocampus of mice.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Animals , Mice , AMP-Activated Protein Kinases , Chromatography, High Pressure Liquid , NLR Family, Pyrin Domain-Containing 3 Protein , Sirtuin 1 , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation
5.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6500-6508, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212007

ABSTRACT

This study aimed to investigate the effect of Jiaotai Pills on protein expression in the hippocampus of the rat model of chronic unpredictable mild stress(CUMS)-induced depression by quantitative proteomics and explore the anti-depression mechanism of Jiaotai Pills. The SD rats were randomized into control, model, Jiaotai Pills, and fluoxetine groups(n=8). Other groups except the control group were subjected to CUMS modeling for 4 weeks. After 4 weeks of continuous administration, the changes of behavior and pathological morphology of the hippocampal tissue were observed. Proteins were extracted from the hippocampal tissue, and bioinformatics analysis was performed for the differentially expressed proteins(DEPs) identified by quantitative proteomics. Western blot was employed to verify the key DEPs. The results showed that Jiaotai Pills significantly alleviated the depression behaviors and hippocampal histopathological changes in the rat model of CUMS-induced depression. A total of 5 412 proteins were identified in the hippocampus of rats, including 65 DEPs between the control group and the model group and 35 DEPs between the Jiaotai Pills group and the model group. There were 16 DEPs with the same trend in the Jiaotai Pills group and the control group, which were mainly involved in sphingolipid, AMPK, and dopaminergic synapse signaling pathways. The Western blot results of Ppp2r2b, Cers1, and Ndufv3 in the hippocampus were consistent with the results of proteomics. In conclusion, Jiaotai Pills may play an anti-depression role by modulating the levels of Ppp2r2b, Cers1, Ndufv3 and other proteins and regulating sphingolipid, AMPK, and dopaminergic synapse signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Depression , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Depression/drug therapy , AMP-Activated Protein Kinases/metabolism , Proteomics , Hippocampus , Stress, Psychological/metabolism , Sphingolipids/metabolism , Disease Models, Animal
6.
Front Pharmacol ; 13: 1064498, 2022.
Article in English | MEDLINE | ID: mdl-36467079

ABSTRACT

Background: Abelmoschus manihot (L.) Medik ("Huangkui" in Chinese, HK) has been widely used for the treatment of kidney diseases. Nephrotoxicity is the side effect of cisplatin (CDDP), which greatly limits its clinical application. Therefore, CDDP could be used to establish the chronic kidney disease (CKD) model. However, the protective effects of HK on CDDP-induced CKD have not been investigated. Purpose: To explore the protective effect and underlying mechanisms of HK on multiple low-dose CDDP-induced CKD in rats by the integrated analysis of serum, kidney, and urine metabolomics and network pharmacology. Methods: The CKD model was induced by multiple low-dose CDDP. Body weight, organ index, serum biochemical, and kidney histology were examined to evaluate the effect of HK. Serum, kidney, and urine were collected and profiled by HILIC/RPLC-Q-TOF/MS-based metabolomics. Potential biomarkers (PBs) were screened according to the criteria of VIP >1, p < 0.01, and FC > 2, and then identified or assigned. The pathway analysis and PBs enrichment were conducted by MetaboAnalyst and ChemRICH. Furthermore, network pharmacology was adopted to dig out the active components and targets. Finally, the results from metabolomics and network pharmacology were integrated to confirm each other. Results: HK could recover the CDDP-induced abnormal pharmacological and metabolic profile changes. A total of 187 PBs were screened and identified from the serum, kidney, and urine metabolomics. Pathway analysis showed that multiple metabolic pathways, mainly related to amino acid and lipid metabolisms, were involved in the nephroprotective effect of HK, and especially, HK could significantly alleviate the disorder of tryptophan metabolism pathway in serum, kidney, and urine. Meanwhile, network pharmacology analysis revealed that 5 components in HK and 4 key genes could be responsible for the nephroprotection of HK, which also indicated that the metabolism of tryptophan played an important role in HK against CKD. Conclusion: HK has a nephroprotection on CDDP-induced CKD, mainly by restoring the dysregulation of tryptophan metabolism. Integrated analysis of serum, kidney, and urine metabolomics and network pharmacology was a powerful method for exploring pharmacological mechanisms and screening active components and targets of traditional Chinese medicine.

7.
Nat Prod Res ; : 1-5, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36260488

ABSTRACT

Three new annonaceous acetogenins, annotemoyin L (1), annotemoyin Y (2) and annotemoyin X, (3) were isolated from the seeds of Annona squamosa Linn. Their structures were ascertained by chemical methods and spectral data. The cytotoxic activities of compounds against three multidrug-resistant cancer cell lines were evaluated, and compound 3 exerted strong cytotoxicity against SMMC 7721/ADR (IC50 0.163 µM), A549/T (IC50 0.064 µM) and MCF-7/ADR (IC50 0.057 µM).

8.
Zhongguo Zhong Yao Za Zhi ; 47(18): 5079-5087, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164918

ABSTRACT

A high-performance liquid chromatography-tandem mass spectrometry(LC-MS/MS) was developed for simultaneously determining the components(magnoflorine, jatrorrhizine, berberrubine, coptisine, berberine) of Jiaotai Pills and Fluoxetine in plasma of rats with chronic unpredictable mild stress(CUMS)-induced depression to investigate the pharmacokinetic herb-drug interaction of Jiaotai Pills and Fluoxetine in the rats. The six components showed good linear relationship within the corresponding concentration ranges, and the method showed high specificity, accuracy, precision, and stability. Their pharmacokinetic parameters were calculated by DAS 3.2.2, and the results showed that the in vivo metabolic processes of the six components accorded with the characteristics of non-compartmental model. When Jiaotai Pills and Fluoxetine were used together, the AUC_(0-t), AUC_(0-∞), C_(max), and C_(av) of magnoflorine all significantly increased(P<0.05), while the pharmacokinetic trend of berberrubine was opposite to that of magnoflorine, as manifested by the decrease in AUC_(0-t), AUC_(0-∞), T_(max), C_(max), and C_(av)(P<0.01, P<0.05). The pharmacokinetic characteristics of jatrorrhizine, coptisine, and berberine followed the trend of berberrubine. There was no significant difference in the pharmacokinetic characteristics of Fluoxetine in the single or combination groups. This study suggests that the enhanced antidepressant efficacy of Jiaotai Pills and Fluo-xetine may be attributed to the pharmacokinetic interaction.


Subject(s)
Berberine , Fluoxetine , Animals , Chromatography, Liquid/methods , Depression/drug therapy , Drugs, Chinese Herbal , Rats , Tandem Mass Spectrometry/methods
9.
Front Pharmacol ; 13: 918776, 2022.
Article in English | MEDLINE | ID: mdl-35873590

ABSTRACT

Zhi-Zi Hou-Po Decoction (ZHD) has been widely used in the treatment of depression for centuries. This study aimed to investigate the antidepressant effects of the water extract of ZHD (ZHD-WE) and ethanol extract of ZHD (ZHD-EE) using behavioral despair tests in mice, and to further explore the neuroprotective effects in a PC12 cell injury model induced by corticosterone (CORT). Mice were divided into a control group (normal saline), ZHD-WE groups (4, 8, and 16 g kg-1), ZHD-EE groups (4, 8, and 16 g kg-1) and the fluoxetine group (20 mg kg-1). The forced swimming test (FST) and tail suspension test (TST) were used to screen the antidepressant effects of ZHD-WE and ZHD-EE after oral administration for seven consecutive days. The level of brain-derived neurotrophic factor (BDNF) in the hippocampus was determined by ELISA. The MTT, lactate dehydrogenase (LDH) and flow cytometry analysis were performed to elucidate the neuroprotective effect of ZHD-EE on a PC12 cell injury model. Additionally, the mRNA and proteins expression of apoptotic molecules Bax, Bcl-2 and BDNF were detected by RT-PCR and western blot assay. It showed that ZHD-EE at concentrations of 8 and 16 g kg-1 significantly decreased the immobility time in the TST and FST, and increased the BDNF levels in the hippocampus. While ZHD-WE at concentrations of 4, 8, and 16 g kg-1 had no significant effect on the immobility time in the TST, and only the 16 g kg-1 of extract group significantly decreased the immobility time in the FST. In vitro, the obtained results showed that PC12 cells pre-incubated with ZHD-EE at concentrations of 100 and 400 µg ml-1 improved cell viability, decreased LDH release, and reduced apoptosis rate of PC12 cells. Moreover, ZHD-EE significantly increased the mRNA and proteins expression of Bcl-2 and BDNF, while decreased the mRNA and protein expression of Bax. ZHD-EE significantly improved despair-like behavior in mice, and its mechanism may be related to BDNF upregulation in the hippocampus. This study also showed that ZHD-EE had a protective effect on CORT-induced injury in PC12 cells by upregulating the expression of BDNF and restoring Bcl-2/Bax balance.

10.
Phytomedicine ; 102: 154149, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35567995

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is an important death-related disease in the world and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that emodin, the main ingredient of Rheum palmatum, fights cancer but its potential anti-tumor effect on CRC is still unknown. PURPOSE: The present study is aimed to explore the potential anti-tumor effects of emodin against CRC and the underlying molecular mechanism. METHODS: CRC-related datasets were screened according to filter criteria in the GEO database and TCGA database. By using screened differentially expressed genes, GO, KEGG and survival analysis were carried out. The expressions of ACSL4, VEGFR1, and VEGFR2 were examined by immunohistochemistry and western blot. Then, pcDNA-ACSL4, pcDNA-VEGFR1, and pcDNA-VEGFR2 were used to overexpress ACSL4, VEGFR1, and VEGFR2, while ACSL4 siRNA was used to silence ACSL4 expression in HCT116 cells. CCK-8 assay and transwell migration assay were used to detect the cell proliferation and invasion. A docking simulation assay and an MST assay were performed to explore the potential mode of emodin binding to ACSL4. The HCT116 cells and CRC mouse model were established to investigate the effects of emodin on CRC. RESULTS: The ACSL4, VEGFR1, and VEGFR2 expression were upregulated in CRC tissues and ACSL4 was associated with a shorter survival time in CRC patients. ACSL4 downregulation reduced cell proliferation and invasion, while ACSL4 exhibited a positive correlation with the levels of VEGFR1, VEGFR2, and VEGF. In HCT116 cells, emodin reduced cell proliferation and invasion by inhibiting ACSL4, VEGFR1, and VEGFR2 expression and VEGF secretion. Docking simulation and MST assay confirmed that emodin can directly bind to ACSL4 target. Moreover, ACSL4 overexpression abolished the inhibitory effect of emodin on VEGF secretion and VEGFR1 and VEGFR2 expression, but VEGFR1 and VEGFR2 overexpression did not affect the inhibitory effect of emodin on ACSL4 expression and VEGF secretion. Furthermore, emodin reduced the mortality and tumorigenesis of CRC mice and reduced ACSL4, VEGFR1, VEGFR2 expression, and VEGF content. CONCLUSION: Our findings indicate that emodin inhibits proliferation and invasion of CRC cells and reduces VEGF secretion and VEGFR1 and VEGFR2 expression by inhibiting ACSL4. This emodin-induced pathway offers insights into the molecular mechanism of its antitumor effect and provides a potential therapeutic strategy for CRC.


Subject(s)
Coenzyme A Ligases , Colorectal Neoplasms , Emodin , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Emodin/pharmacology , HCT116 Cells , Humans , Mice , Vascular Endothelial Growth Factor A/metabolism
11.
Drug Metab Pharmacokinet ; 43: 100402, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35051733

ABSTRACT

CYP4 enzymes are involved in the metabolism of xenobiotics and endogenous molecules. 20-Hydroxyeicosatetraenoic acid (20-HETE), the arachidonic acid (AA) ω-hydroxylation metabolite catalyzed by CYP4A/4F enzymes, is implicated in various biological functions. The goal of this investigation is to examine the inhibitory effects of components from Salvia miltiorrhiza(Danshen) on AA ω-hydroxylation using recombinant CYP4A11, CYP4F2, CYP4F3B, and microsomal systems. Tanshinone IIA had noncompetitive inhibition on CYP4F3B (Ki = 4.98 µM). Cryptotanshinone (Ki = 6.87 µM) and tanshinone I (Ki = 0.42 µM) had mixed-type inhibition on CYP4A11. Dihydrotanshinone I had mixed-type inhibition on CYP4A11 (Ki = 0.09 µM), and noncompetitive inhibition on CYP4F2 (Ki = 4.25 µM) and CYP4F3B (Ki = 3.08 µM). Salvianolic acid A had competitive inhibition on CYP4A11 (Ki = 19.37 µM), and noncompetitive inhibition on CYP4F2 (Ki = 15.28 µM) and CYP4F3B (Ki = 6.45 µM). Salvianolic acid C had noncompetitive inhibition on CYP4F2 (Ki = 5.70 µM) and CYP4F3B (Ki = 18.64 µM). In human kidney, human liver or rat heart microsomes, 20-HETE formation was significantly inhibited (P < 0.05) by dihydrotanshinone I (5 and 20 µM) and salvianolic acid A (20 and 50 µM). Given that low plasma concentrations of Danshen components after oral administration, Danshen preparations may not play pharmacological roles by inhibiting AA ω-hydroxylases; however, as Danshen components may reach high concentration in human intestine, drugs that have an important pre-systemic metabolism by these CYP4A/4F enzymes should avoid being co-administered with Danshen preparations.


Subject(s)
Salvia miltiorrhiza , Animals , Cytochrome P-450 Enzyme System/metabolism , Furans , Humans , Microsomes, Liver/metabolism , Phenanthrenes , Quinones , Rats , Salvia miltiorrhiza/metabolism
12.
Biomed Chromatogr ; 36(2): e5261, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34716608

ABSTRACT

A rapid and sensitive LC-MS/MS method was developed and validated for the simultaneous determination of nicotinamide and its metabolite N1 -methylnicotinamide in human serum. Serum samples were prepared by protein precipitation with acetonitrile. The chromatographic separation was performed on a Waters Spherisorb S5 CN microbore column (2.0 × 100 mm, 5 µm) with gradient elution within 7 min. Acetonitrile and 5 mm ammonium formate aqueous solution (containing 0.1% formic acid) were used as mobile phases. Nicotinamide, N1 -methylnicotinamide and N'-methylnicotinamide (internal standard) were detected with a triple-quadrupole tandem mass spectrometer in the positive ion mode. Multiple reaction monitoring was used to monitor precursor to product ion transitions of m/z 123.1 → 80.1 for nicotinamide, m/z 137.1 → 94.1 for N1 -methylnicotinamide and m/z 137.1 → 80.1 for the internal standard. The linear ranges of nicotinamide and N1 -methylnicotinamide were 5.000-160.0 and 2.500-80.00 ng/ml, respectively. The intra- and inter-day precisions (RSD) of both analytes were within 6.90%. The recoveries were >88%. The analytes were proven to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to determine the concentrations of nicotinamide and N1 -methylnicotinamide in human serum to investigate the association between their concentrations and obesity in 1160 Chinese subjects.


Subject(s)
Chromatography, Liquid/methods , Niacinamide/analogs & derivatives , Niacinamide/blood , Obesity/blood , Tandem Mass Spectrometry/methods , Adult , Humans , Limit of Detection , Linear Models , Middle Aged , Reproducibility of Results
13.
Front Pharmacol ; 12: 765638, 2021.
Article in English | MEDLINE | ID: mdl-34925022

ABSTRACT

Menopausal depression perplexes a great number of women in later life. Xiangfu-Zisu (Xiang-Su), a traditional Chinese herbal pair composed of rhizomes of Cyperus rotundus L. (Xiangfu) and leaves of Perilla frutescens (L.) Britt. (Zisu), is frequently reported with antidepressant-like effects. The volatile oil from Xiangfu and Zisu has shown good antidepressant action, but its mechanism is still unclear. This study aimed to investigate the pharmacological mechanism of Xiang-Su (XS) volatile oil against menopausal depression through gas chromatography-mass spectrometry (GC-MS)-based network pharmacology and metabolomics. First, ADME screening was performed on actual detected components of XS volatile oil to obtain active constituents, and then duplicates of active constituent-related targets and menopausal depression-related targets were collected. These duplicates were considered as targets for XS volatile oil against menopausal depression, followed by GO and KEGG enrichment analyses. It showed that a total of 64 compounds were identified in XS volatile oil, and 38 active compounds were screened out. 42 overlapping genes between 144 compound-related genes and 780 menopausal depression-related genes were obtained. Results showed that targets of SLC6A4 and SLC6A3, regulation of serotonergic and dopaminergic synapses, were involved in the antidepressant mechanism of XS volatile oil. Next, antidepressant-like effect of XS volatile oil was validated in menopausal rats by ovariectomy (OVX) combined with chronic unpredictable mild stress (CUMS). Behavioral tests, biochemical analysis, and GC-MS-based non-targeted plasma metabolomics were employed to validate the antidepressant effect of XS volatile oil. Experimental evidence demonstrated that XS volatile oil reversed behavioral parameters in the sucrose preference test (SPT), open-field test (OFT), forced swim test (FST), and serum estradiol levels in OVX rats. Furthermore, results of metabolomics indicated that XS volatile oil mainly acts on regulating metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, tyrosine metabolism, and tryptophan metabolism, which were corresponding with the above-predicted results. These data suggest that network pharmacology combined with metabolomics provides deep insight into the antidepressant effect of XS volatile oil, which includes regulating key targets like SLC6A4 and SLC6A3, and pathways of serotonergic and dopaminergic synapses.

14.
Front Pharmacol ; 12: 711303, 2021.
Article in English | MEDLINE | ID: mdl-34690756

ABSTRACT

Zhi-Zi-Hou-Po Decoction (ZZHPD) is a well-known traditional Chinese medicine (TCM) that has been widely used in depression. However, the antidepressant mechanism of ZZHPD has not yet been fully elucidated. The purpose of this study was to explore the pharmacological mechanisms of ZZHPD acting on depression by combining ultra flow liquid chromatography with quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF/MS) and network pharmacology strategy. The chemical components of ZZHPD were identified using UFLC-Q-TOF/MS, while the potential drug targets and depression-related targets were collected from databases on the basis of the identified compounds of ZZHPD. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were used to unravel potential antidepressant mechanisms. The predicted antidepressant targets from the pharmacology-based analysis were further verified in vivo. As a result, a total of 31 chemical compounds were identified by UFLC-Q-TOF/MS; 514 promising drug targets were mined by using the Swiss Target Prediction; and 527 depression-related target genes were pinpointed by the GeneCards and OMIM databases. STRING database and Cytoscape's topological analysis revealed 80 potential targets related to the antidepressant mechanism of ZZHPD. The KEGG pathway analysis revealed that the antidepressant targets of ZZHPD were mainly involved in dopaminergic synapse, serotonin synapse, cAMP, and mTOR signaling pathways. Furthermore, based on the animal model of depression induced by chronic corticosterone, the regulatory effects of ZZHPD on the expression of MAOA, MAOB, DRD2, CREBBP, AKT1, MAPK1, HTR1A, and GRIN2B mRNA levels as well as the cAMP signaling pathway and monoaminergic metabolism were experimentally verified in rats. Our study revealed that ZZHPD is expounded to target various genes and pathways to perform its antidepressant effect.

15.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3687-3693, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34402293

ABSTRACT

A LC-MS/MS method was developed for the rapid and simultaneous determination of genipin-1-ß-D-gentiobioside,geniposide,naringin,hesperidin and neohesperidin in SD rat plasma.The linear relationships of these five constituents in rats were validated,and the specificity,accuracy,precision and stability met the requirements.Their pharmacokinetic parameters were calculated by DAS 3.2.2,and the results showed that the metabolic process in vivo of the five constituents accorded with the characteristics of noncompartmental model.Their main pharmacokinetic parameters were listed as follows:(1) genipin-1-ß-D-gentiobioside:t_(1/2)(3.20±0.51)h,C_(max)(403.15±96.93)µg·L~(-1)and AUC_(0-t)(612.56±148.50)µg·L~(-1)·h for the model group,while t_(1/2)(3.07±0.75) h,C_(max)(229.50±60.63)µg·L~(-1)and AUC_(0-t)(413.14±76.37)µg·L~(-1)·h for the normal group;(2) geniposide:t_(1/2)(3.24±0.68) h,C_(max)(2 961.40±688.02)µg·L~(-1),and AUC_(0-t)(10 972.87±1 992.96)µg·L~(-1)·h for the model group,while t_(1/2)(4.56±0.96) h,C_(max)(1 833.27±558.13)µg·L~(-1),and AUC_(0-t)(8 996.27±3 053.48)µg·L~(-1)·h for the normal group;(3) naringin:t_(1/2)(1.64±0.59) h,C_(max)(415.13±259.54)µg·L~(-1),and AUC_(0-t)(608.62±289.05)µg·L~(-1)·h for the model group,while t_(1/2)(1.02±0.25) h,C_(max)(355.08±180.00)µg·L~(-1),and AUC_(0-t)(501.07±242.68)µg·L~(-1)·h for the normal group;(4) hesperidin:t_(1/2)(0.86±0.29) h,C_(max)(95.17±22.80)µg·L~(-1)and AUC_(0-t)(141.19±54.63)µg·L~(-1)·h for the model group,while t_(1/2)(0.95±0.31) h,C_(max)(46.48±18.33)µg·L~(-1)and AUC_(0-t)(69.51±14.73)µg·L~(-1)·h for the normal group;(5) neohesperidin:t_(1/2)(0.89±0.29) h,C_(max)(828.78±361.56)µg·L~(-1)and AUC_(0-t)(1 292.29±553.73)µg·L~(-1)·h for the model group,while t_(1/2)(0.90±0.31) h,C_(max)(314.68±172.45)µg·L~(-1)and AUC_(0-t)(385.99±138.55)µg·L~(-1)·h for the normal group.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Rats , Rats, Sprague-Dawley
16.
J Sep Sci ; 44(14): 2754-2763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34008891

ABSTRACT

Epoxide hydrolases catalyze the hydrolysis of both exogenous and endogenous epoxides to the corresponding vicinal diols by adding water. Microsomal and soluble epoxide hydrolase are two main mammalian enzymes that have been intensely characterized. The purpose of this investigation was to develop and validate a proteomics assay allowing the simultaneous quantification of microsomal and soluble epoxide hydrolase in rats. Protein quantification was realized through targeted proteomics using liquid chromatography with tandem mass spectrometry for the determination of trypsin-specific surrogate peptides after digestion. Stable isotope-labeled peptides were used as the internal standards. The chromatography of the surrogate peptides was performed on an Agilent SB C18 column (100 mm × 4.6 mm, 1.8 µm) with gradient elution. Acetonitrile containing 0.1% formic acid and 0.1% formic acid aqueous solution were used as mobile phases. A multiple reaction monitoring method in a positive ionization mode was used for the simultaneous detection of the peptides. The method was validated concerning the specificity, linearity, within-day and between-day accuracy and precision, matrix effect, stability, and digestion efficiency. The developed assay was successfully used to quantify the protein levels of microsomal and soluble epoxide hydrolase in rat liver, kidney, and heart S9 samples.


Subject(s)
Epoxide Hydrolases/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Isotope Labeling , Kidney/chemistry , Liver/chemistry , Mass Spectrometry/methods , Myocardium/chemistry , Peptides/analysis , Rats , Spectrometry, Mass, Electrospray Ionization/methods
17.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6511-6519, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34994144

ABSTRACT

The present study investigated the effects and mechanisms of Jiaotai Pills on depressed mice induced by chronic unpredictable mild stress(CUMS). The CUMS-induced depression model mice were established and the depression behaviors of mice were evaluated by sucrose preference test, open field test, tail suspension test, and forced swimming test. Molecular docking was employed to simulate the interaction of six main active ingredients in Jiaotai Pills with SIRT1. Immunohistochemical staining was used to detect the level of SIRT1 in the hippocampus of mice. Western blot was used to detect the protein expression levels of SIRT1, p-NF-κB p65, NF-κB p65, and FoxO1 in the hippocampus of mice. Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the levels of interleukin(IL)-1ß, IL-6, tumor necrosis factor-α(TNF-α), and brain-derived neurotrophic factor(BDNF) in the hippocampus and serum of mice. Biochemical kits were used to detect superoxide dismutase(SOD) activity and malondialdehyde(MDA) and glutathione(GSH) levels in the hippocampus and serum of mice. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to detect the levels of dopamine(DA), 5-hydroxytryptamine(5-HT), and norepinephrine(NE) in the hippocampus and serum of mice. The results showed that the sucrose preference rate, movement distance, and the number of crossing centers were reduced in the model group(P<0.01), and the tail suspension time and swimming immobility time were increased(P<0.01). Molecular docking results indicated good binding of six main active ingredients in Jiaotai Pills to SIRT1. In the hippocampus, the expression level of SIRT1 was reduced(P<0.01), and the levels of p-NF-κB p65/NF-κB p65 and FoxO1 were increased(P<0.01). In the hippocampus and serum, the levels of IL-1ß, IL-6, TNF-α, and MDA were increased(P<0.01), and the activity of SOD and the levels of GSH, DA, 5-HT, NE, and BDNF were reduced(P<0.01). The treatment with high-dose Jiaotai Pills increased the sucrose preference rate, movement distance, and the number of crossing centers(P<0.05), reduced tail suspension time and swimming immobility time(P<0.01), elevated hippocampal SIRT1 expression level(P<0.01), decreased hippocampal and serum IL-1ß, IL-6, TNF-α, and MDA levels(P<0.01), potentiated SOD activity, and up-regulated GSH, DA, 5-HT, NE, and BDNF levels in the hippocampus and serum(P<0.05, P<0.01) in model mice. In conclusion, the results showed that Jiaotai Pills could improve the depression behaviors of model mice with CUMS-induced depression, and the underlying mechanism was related to the up-regulation of SIRT1 in the hippocampus of mice to exert anti-inflammatory and anti-oxidative stress effects.


Subject(s)
Antidepressive Agents , Depression , Animals , Behavior, Animal , Chromatography, Liquid , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Drugs, Chinese Herbal , Hippocampus , Mice , Molecular Docking Simulation , Sirtuin 1/genetics , Stress, Psychological , Tandem Mass Spectrometry
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(8): 1072-1080, 2020 Aug 30.
Article in Chinese | MEDLINE | ID: mdl-32895172

ABSTRACT

OBJECTIVE: To explore the pharmacologically active ingredients in Toujie Quwen granules (TJQW) for treatment of coronavirus disease 2019 (COVID-19) in light of systemic pharmacology. METHODS: We performed database search, literature mining and drug-like index screening to identify the bioactive components in TJQW, the positive drugs for disease treatment and their therapeutic targets. The core disease target was investigated based on the cross-linking interaction of the bioactive components, positive drug and potential disease target, and the target proteins at the key nodes were analyzed by GO and KEGG analyses. Based on the therapeutic targets for COVID-19, virtual screening was conducted to screen the compounds in TJQW and construct the network cross-linking the key bioactive molecules in TJQW, key node targets of the disease, and the related biological pathways. RESULTS: We identified 159 compounds in TJQW and obtained 18 core proteins based on the cross-linking of the bioactive components, positive drugs and disease targets. The key node targets consisted of 22 targets including the latest 4 COVID-19 proteins. Virtual screening results showed that at least 14 compounds could bind with the core disease target proteins. The material basis of TJQW for COVID-19 treatment was explained in multi-pathway, multi-component and multi-target perspectives. In terms of the structural characteristics of the compounds, we screened the top 30 molecules with strong binding with the target proteins, among which flavonoids were the predominant components. CONCLUSIONS: This investigation reveals the therapeutic mechanism of TJQW for COVID-19 involving multiple components, targets and pathways from the perspective of key bioactive molecules, disease key node targets and related biological pathways. We screened 30 active precursors from TJQW, which provides reference for the clinical application and further development of TJQW.


Subject(s)
Betacoronavirus , Coronavirus Infections , Drugs, Chinese Herbal , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/drug therapy , Humans , Medicine, Chinese Traditional , Pneumonia, Viral/drug therapy , SARS-CoV-2 , COVID-19 Drug Treatment
19.
Front Oncol ; 10: 721, 2020.
Article in English | MEDLINE | ID: mdl-32435622

ABSTRACT

Long-lasting inflammation in the intestinal tract renders individuals susceptible to colitis-associated cancer (CAC). The NOD-like receptor protein 3 (NLRP3) inflammasome plays a key role in the progression of inflammatory bowel disease and CAC. Therefore, identifying effective drugs that prevent CAC by targeting NLRP3 inflammasome is of great interest. Here, we aimed to evaluate the anti-inflammatory effect of caffeic acid phenethyl ester (CAPE) on bone marrow-derived macrophages (BMDMs), THP-1 cells, and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon cancer mouse model. We also investigated the anti-tumor mechanism of CAPE. We found that CAPE decreased NLRP3 inflammasome activation in BMDMs and THP-1 cells and protected mice from colorectal cancer induced by AOM/DSS. CAPE regulated NLRP3 at the post-transcriptional level by inhibiting reactive oxygen species (ROS) production. However, CAPE did not affect NLRP3 or IL-1ß transcription, but instead enhanced NLRP3 binding to ubiquitin molecules, promoting NLRP3 ubiquitination, and contributing to the anti-tumor effect in the AOM/DSS mouse model. Moreover, CAPE suppressed the interaction between NLRP3 and CSN5 but enhanced that between NLRP3 and Cullin1 both in vivo and in vitro. Altogether, our findings demonstrate that CAPE prevents CAC by post-transcriptionally inhibiting NLRP3 inflammasome. Thus, CAPE may be an effective candidate for reducing the risk of CAC in patients with inflammatory bowel disease.

20.
Neural Plast ; 2019: 1571392, 2019.
Article in English | MEDLINE | ID: mdl-31814820

ABSTRACT

Evidence suggests that inflammation and neurogenesis play an important role in major depressive disorder (MDD). Mahuang-Fuzi-Xixin decoction (MFX), as the traditional Chinese prescription, has been widely applied for asthma, migraine, and MDD in clinics. However, the effects of MFX on the potential mechanism in MDD are still unclear. Hence, the present study is aimed at exploring whether the antidepressive effect of MFX is connected to the anti-inflammatory and promoting neurogenesis. Besides, lipopolysaccharide (LPS) of Gram-negative bacteria can induce depressive-like behaviors. We demonstrated that administration of MFX corrected the depressive-like behaviors in LPS-induced mice and significantly decreased the expression of IL-1ß in the hippocampus. LPS injection induced a significant increase in the levels of NLRP3, cleaved caspase-1 p20, and ASC in the hippocampus, as well as Trx-interacting protein (TXNIP), and MFX could reverse this change. What is more, treatment of MFX increased the level of doublecortin (DCX), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase receptor B (TrkB) in the hippocampus which means that MFX could promote the neurogenesis. In conclusion, the study indicates that MFX relieves a depressive-like state in LPS-induced mice through the inhibition of the NLRP3 inflammasome and the enhancement of the neurogenesis pathway.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Drugs, Chinese Herbal/therapeutic use , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurogenesis/drug effects , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/metabolism , Disease Models, Animal , Doublecortin Protein , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Mice , Neurons/drug effects , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...