Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(23): 38540-38549, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017957

ABSTRACT

Compared to other parts of the electromagnetic spectrum, the terahertz frequency range lacks efficient polarization manipulation techniques, which is impeding the proliferation of terahertz technology. In this work, we demonstrate a tunable and broadband linear-to-circular polarization converter based on an InSb plate containing a free-carrier magnetoplasma. In a wide spectral region (∼ 0.45 THz), the magnetoplasma selectively absorbs one circularly polarized mode due to electron cyclotron resonance and also reflects it at the edges of the absorption band. Both effects are nonreciprocal and contribute to form a near-zero transmission band with a high isolation of -36 dB, resulting in the output of a near-perfect circularly polarized terahertz wave for an incident linearly polarized beam. The near-zero transmission band is tunable with magnetic field to cover a wide frequency range from 0.3 to 4.8 THz.

2.
Opt Express ; 30(2): 957-965, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209273

ABSTRACT

Reverse design is a frontier direction in the optical research field. In this work, reverse design is applied to the design of terahertz devices. We have employed direct binary search (DBS) and binary particle swarm optimization (BPSO) algorithms to design pixel-type terahertz band-pass filters, respectively. Through a comparative analysis of the designed devices, we found that BPSO algorithm converged faster than DBS algorithm, and the device performance is better on out-of-band suppression. We have fabricated a sample utilizing femtosecond laser micromachining and characterized it by terahertz time-domain spectroscopy. The experimental results were consistent with the finite difference time domain (FDTD) simulation. Our method can simultaneously optimize multiple characteristics of the band-pass filters, including the peak transmittance, out-of-band transmittance, bandwidth, and polarization stability, which can not be achieved by traditional optical design methods.

3.
Micromachines (Basel) ; 12(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577736

ABSTRACT

The reverse design method (RDM) is a frontier direction in the optical research field. In this work, RDM is applied to the design of terahertz demultiplexers, including two-port and three-port terahertz demultiplexers, with areas of 3 mm × 3 mm and 5 mm × 5 mm, respectively. The Finite-Difference Time-Domain (FDTD) simulation results show that the terahertz waves at frequencies of 0.5 THz and 0.417 THz can be well separated by the two-port demultiplexer, and the transmittances of the two outputs reach as high as 0.75 after bandwidth optimization. Meanwhile, the three-port terahertz demultiplexer can have terahertz waves separated from three Ports, and the crosstalk between adjacent channels is less than -18 dB.

4.
Opt Express ; 29(6): 9261-9268, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820358

ABSTRACT

Plasma edges in metals typically occur in the visible range, producing characteristic colors of metals. In a lightly doped semiconductor, the plasma edge can occur in the terahertz (THz) frequency range. Due to low scattering rates and variable electron densities in semiconductors, such THz plasma edges can be extremely sharp and greatly tunable. Here, we show that an ultrasharp THz plasma edge exists in a lightly n-doped InSb crystal with a record-high transmittance slope of 80 dB/THz. The frequency at which this sharp edge happens can be readily tuned by changing the temperature, electron density, scattering rate, and sample thickness. The edge frequency exhibited a surprising increase with decreasing temperature below 15 K, which we explain as a result of a weak-to-strong transition in the scattering rate, going from ωτ  ≫ 1 to ωτ âˆ¼ 1. These results indicate that doped narrow-gap semiconductors provide a versatile platform for manipulating THz waves in a controllable manner, especially as a high-pass filter with an unprecedented on/off ratio.

5.
Opt Express ; 25(21): 25125-25134, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041184

ABSTRACT

We report on the fabrication and transmission properties of free-standing single-layer and double-layer THz bandpass filters. These filters are fabricated on aluminum foils using femtosecond laser micro-machining. The aluminum foils are periodically patterned with cross apertures with a total area of 1.75×1.75 cm2, also known as frequency-selective surfaces. Their terahertz transmission properties were simulated using the FDTD method and measured using a time-domain terahertz spectroscopy system. The simulation results agree with the measurements results very well. The performance of single-layer bandpass filters is as good as the commercial equivalents on the market. The double-layer filters show extraordinary transmission peaks with changing spacing between the two layers. We show the contour map of the electric field distribution across the apertures, and ascribe the new transmission peaks to the interference and coupling of surface plasmon polaritons between the two layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...