Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
World J Gastrointest Oncol ; 16(6): 2520-2530, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994151

ABSTRACT

BACKGROUND: Colorectal cancer is currently the third most common malignant tumor and the second leading cause of cancer-related death worldwide. Neoadjuvant chemoradiotherapy (nCRT) is standard for locally advanced rectal cancer (LARC). Except for pathological examination after resection, it is not known exactly whether LARC patients have achieved pathological complete response (pCR) before surgery. To date, there are no clear clinical indicators that can predict the efficacy of nCRT and patient outcomes. AIM: To investigate the indicators that can predict pCR and long-term outcomes following nCRT in patients with LARC. METHODS: Clinical data of 128 LARC patients admitted to our hospital between September 2013 and November 2022 were retrospectively analyzed. Patients were categorized into pCR and non-pCR groups. Univariate analysis (using the χ 2 test or Fisher's exact test) and logistic multivariate regression analysis were used to study clinical predictors affecting pCR. The 5-year disease-free survival (DFS) and overall survival (OS) rates were calculated using Kaplan-Meier analysis, and differences in survival curves were assessed with the log-rank test. RESULTS: Univariate analysis showed that pretreatment carcinoembryonic antigen (CEA) level, lymphocyte-monocyte ratio (LMR), time interval between neoadjuvant therapy completion and total mesorectal excision, and tumor size were correlated with pCR. Multivariate results showed that CEA ≤ 5 ng/mL (P = 0.039), LMR > 2.73 (P = 0.023), and time interval > 10 wk (P = 0.039) were independent predictors for pCR. Survival analysis demonstrated that patients in the pCR group had significantly higher 5-year DFS rates (94.7% vs 59.7%, P = 0.002) and 5-year OS rates (95.8% vs 80.1%, P = 0.019) compared to the non-pCR group. Tumor deposits (TDs) were significantly correlated with shorter DFS (P = 0.002) and OS (P < 0.001). CONCLUSION: Pretreatment CEA, LMR, and time interval contribute to predicting nCRT efficacy in LARC patients. Achieving pCR demonstrates longer DFS and OS. TDs correlate with poor prognosis.

2.
Cell Death Dis ; 15(6): 460, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942760

ABSTRACT

Lung cancer stands as the leading cause of mortality among all types of tumors, with over 40% of cases being lung adenocarcinoma (LUAD). Family with sequence similarity 83 member A (FAM83A) emerges as a notable focus due to its frequent overexpression in LUAD. Despite this, the precise role of FAM83A remains elusive. This study addresses this gap by unveiling the crucial involvement of FAM83A in maintaining the cancer stem cell-like (CSC-like) phenotype of LUAD. Through a global proteomics analysis, the study identifies human epidermal growth factor receptor 2 (HER2 or ErbB2) as a crucial target of FAM83A. Mechanistically, FAM83A facilitated ErbB2 expression at the posttranslational modification level via the E3 ubiquitin ligase STUB1 (STIP1-homologous U-Box containing protein 1). More importantly, the interaction between FAM83A and ErbB2 at Arg241 promotes calcineurin (CALN)-mediated dephosphorylation of ErbB2, followed by inhibition of STUB1-mediated ubiquitin-proteasomal ErbB2 degradation. The maintenance of the CSC-like phenotype by FAM83A, achieved through the posttranslational regulation of ErbB2, offers valuable insights for identifying potential therapeutic targets for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Proteins , Neoplastic Stem Cells , Phenotype , Receptor, ErbB-2 , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Female
3.
Article in English | MEDLINE | ID: mdl-38935062

ABSTRACT

OBJECTIVES: The objective of this study was to assess the effect of repetitive transcranial magnetic stimulation (rTMS) on the supplementary motor area (SMA) in motor function in Parkinson's disease (PD) patients. METHOD: Databases searched included 5 databases from October 7,2022 to January 4, 2023. The Cochrane Bias Risk Assessment Tool was used for quality assessment. Standardized mean differences (SMDs) were calculated using a random-effects model. Outcome measure is the motor function examination of the motor part of Unified Parkinson's Disease Rating Scale (UPDRS-III). RESULTS: Seven studies totaling 374 patients were included. Meta-analysis showed that stimulation of SMA significantly improved motor function in PD patients compared with sham stimulation (SMD = -1.24; 95% CI, -2.24 to -0.24; P = 0.02; I 2 = 93%). Stimulation of the same target (SMA), subgroup analysis showed that high-frequency rTMS (HF-rTMS) is more effective than low-frequency rTMS (LF-rTMS) in improving motor function in PD (SMD = -1.39; 95% CI, -2.21 to -0.57; P = 0.04; I 2 = 77.2%). CONCLUSIONS: Overall, rTMS over SMA had a statistically significant improvement in motor function in PD patients, and HF-rTMS is statistically significantly more effective than LF-rTMS.

4.
Curr Pharm Des ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38716546

ABSTRACT

BACKGROUND: To investigate the effect of raltitrexed + X-ray irradiation on esophageal cancer ECA109 cells and analyze the potential action mechanism. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the inhibitory effect of raltitrexed on cell proliferation. The effect of raltitrexed on radiosensitivity was studied through a clone-forming experiment. The scratch assay and invasion test were performed to understand the cell migration and invasion abilities. The apoptosis rate change was measured using a flow cytometer, and Western Blotting was used to determine the expression of B cell lymphoma-2 (Bcl-2) and Bcl2-associated X protein (Bax) in each group. RESULTS: Raltitrexed significantly inhibited ECA109 proliferation in a time-dose-dependent manner; there were significant differences among different concentrations and times of action. The results of the clone-forming experiment showed a sensitization enhancement ratio of 1.65, and this demonstrated a radiosensitization effect. After the combination of raltitrexed with X-ray, the cell migration distance was shortened, and the number of cells penetrating the membrane was reduced. CONCLUSION: Raltitrexed can inhibit the growth of esophageal cancer ECA109 cells and has a radiosensitization effect.

5.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
6.
J Reprod Immunol ; 163: 104250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669790

ABSTRACT

Although both subcutaneous injection and intrauterine infusion of granulocyte colony-stimulating factor (G-CSF) have been reported to improve pregnancy outcomes in patients with recurrent implantation failure (RIF), how to administer it is still no consensus. The study aimed to investigate which administration route is optimal. We searched PubMed, Embase, the Cochrane Library (CENTRAL), Web of Science, and China National Knowledge Internet (CNKI) from inception to April 10, 2023, with language in both English and Chinese. The randomized controlled trials (RCTs) compared the effectiveness of G-CSF to treat patients with RIF were included in this network meta-analysis (NMA). The odds ratio (OR) and 95% confidence interval (CI) in pregnancy outcomes (implantation rate, IR; clinical pregnancy rate, CPR; live birth rate, LBR; miscarriage rate, MR; ectopic pregnancy rate, EPR) were summarized by NMA with a random-effects model. A total of 1360 RIF patients from 14 RCTs were included in this NMA, with no publication bias and small sample effects. No direct evidence compared the effectiveness of different administration routes of G-CSF on IR, LBR and MR. Both subcutaneous injection and intrauterine infusion of G-CSF increased the IR (OR = 2.81, 95% CI: 1.10-7.24; OR = 2.15, 95% CI: 1.50-3.07, respectively) and CPR (OR = 2.79, 95% CI: 1.86-4.17; OR = 1.74, 95% CI: 1.30-2.33, respectively) in patients with RIF. According to SUCRA, subcutaneous injection is more likely to be the optimal medication administration route. However, more high-quality studies were also needed to support these, especially IR and LBR.


Subject(s)
Embryo Implantation , Granulocyte Colony-Stimulating Factor , Network Meta-Analysis , Humans , Female , Pregnancy , Granulocyte Colony-Stimulating Factor/administration & dosage , Embryo Implantation/drug effects , Injections, Subcutaneous , Pregnancy Rate , Randomized Controlled Trials as Topic , Pregnancy Outcome
7.
Heliyon ; 10(8): e29598, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38655340

ABSTRACT

Background: Intestinal bacteria significantly contribute to the metabolism of intestinal epithelial tissues. As the occurrence and development of radiation enteritis (RE) depend on the "co-metabolism" microenvironment formed by the host and intestinal microbiota, which involves complex influencing factors and strong correlations, ordinary techniques struggle to fully explain the underlying mechanisms. However, given that it is based on systems biology, metabolomics analysis is well-suited to address these issues. This study aimed to analyze the metabolomic changes in urine, serum, and fecal samples during volumetric modulated arc therapy (VMAT) for cervical cancer and screen for characteristic metabolites of severe acute radiation enteritis (SARE) and RE. Methods: We enrolled 50 patients who received radiotherapy for cervical cancer. Urine, serum, and fecal samples of patients were collected at one day before radiotherapy and the second week, fourth week, and sixth week after the start of radiotherapy. Control group samples were collected during the baseline period. Differential metabolites were identified by metabolomics analysis; co-metabolic pathways were clarified. We used the mini-SOM library for incorporating characteristic metabolites, and established metabolite classification models for predicting SARE and RE. Results: Urine and serum sample data showed remarkable clustering effect; metabolomics data of the fecal supernatant were evidently disturbed. Patient sample analyses during VMAT revealed the following. Urine samples: Downregulation of the pyrimidine and riboflavin metabolism pathways as well as initial upregulation followed by downregulation of arginine and proline metabolism pathways and the arginine biosynthesis pathway. Fecal samples: Upregulation of linoleic acid and phenylalanine metabolic pathways and initial downregulation followed by upregulation of arachidonic acid (AA) metabolic pathways. Serum samples: Initial upregulation followed by downregulation of the arginine biosynthesis pathway and downregulation of glutathione, AA, and arginine and proline metabolic pathways. Conclusion: Patients with cervical cancer exhibited characteristic metabolic pathways and characteristic metabolites predicting RE and SARE were screened out. An effective RE mini-SOM classification model was successfully established.

8.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659044

ABSTRACT

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Subject(s)
Alcohol Dehydrogenase , Ethanol , Probiotics , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Ethanol/metabolism , Lactobacillus/metabolism , Lactobacillus/genetics , Lactobacillales/genetics , Lactobacillales/metabolism , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Pediococcus acidilactici/metabolism
9.
Gen Psychiatr ; 37(2): e101434, 2024.
Article in English | MEDLINE | ID: mdl-38645380

ABSTRACT

Background: The presence of mental health conditions is pervasive in patients who experienced acute myocardial infarction (AMI), significantly disrupting their recovery. Providing timely and easily accessible psychological interventions using virtual reality-based cognitive-behavioural therapy (VR-CBT) could potentially improve both acute and long-term symptoms affecting their mental health. Aims: We aim to examine the effectiveness of VR-CBT on anxiety symptoms in patients with AMI who were admitted to the intensive care unit (ICU) during the acute stage of their illness. Methods: In this single-blind randomised clinical trial, participants with anxiety symptoms who were admitted to the ICU due to AMI were continuously recruited from December 2022 to February 2023. Patients who were Han Chinese aged 18-75 years were randomly assigned (1:1) via block randomisation to either the VR-CBT group to receive VR-CBT in addition to standard mental health support, or the control group to receive standard mental health support only. VR-CBT consisted of four modules and was delivered at the bedside over a 1-week period. Assessments were done at baseline, immediately after treatment and at 3-month follow-up. The intention-to-treat analysis began in June 2023. The primary outcome measure was the changes in anxiety symptoms as assessed by the Hamilton Anxiety Rating Scale (HAM-A). Results: Among 148 randomised participants, 70 were assigned to the VR-CBT group and 78 to the control group. The 1-week VR-CBT intervention plus standard mental health support significantly reduced the anxiety symptoms compared with standard mental health support alone in terms of HAM-A scores at both post intervention (Cohen's d=-1.27 (95% confidence interval (CI): -1.64 to -0.90, p<0.001) and 3-month follow-up (Cohen's d=-0.37 (95% CI: -0.72 to -0.01, p=0.024). Of the 70 participants who received VR-CBT, 62 (88.6%) completed the entire intervention. Cybersickness was the main reported adverse event (n=5). Conclusions: Our results indicate that VR-CBT can significantly reduce post-AMI anxiety at the acute stage of the illness; the improvement was maintained at the 3-month follow-up. Trial registration number: The trial was registered at www.chictr.org.cn with the identifier: ChiCTR2200066435.

10.
J Assist Reprod Genet ; 41(6): 1645-1659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512656

ABSTRACT

PURPOSE: The window of implantation (WOI) is a brief period during which the endometrium is receptive to embryo implantation. This study investigated the relationship between miR-135a-5p and endometrial receptivity. METHODS: Peripheral blood was collected on the day of ovulation and the 5th day after ovulation for high-throughput sequencing from women who achieved clinical pregnancy through natural cycle frozen embryo transfer. RT-qPCR assessed miR-135a-5p expression in the endometrium tissue or cells during the mouse implantation window or decidualization. Scanning electron microscopy was utilized to observe pinopode morphology and quantity in mice overexpressing miR-135a-5p during the WOI. Human endometrial stromal cells (HESC) and artificial induction of mouse uterine decidualization were used to explore whether miR-135a-5p overexpression inhibits decidualization by regulating HOXA10 and BMPR2. Furthermore, the impact of miR-135a-5p on HESC proliferation and HTR8/SVneo invasion was explored. RESULTS: A total of 54 women were enrolled in the study. bioinformatics analysis and animal models demonstrated that miR-135a-5p was significantly downregulated during the WOI, and its high expression can lead to abnormal pregnancy outcomes. Overexpression of miR-135a-5p resulted in the absence of pinopode in mouse endometrial tissue during the WOI. High miR-135a-5p levels were found to potentially inhibit endometrial tissue decidualization by downregulating HOXA10 and BMPR2 expression. Finally, CEBPD was identified as a potential regulator of miR-135a-5p, which would explain the decreased miR-135a-5p expression during the WOI. CONCLUSION: MiR-135a-5p expression is significantly downregulated during the WOI. High miR-135a-5p levels suppress pinopode development and endometrial tissue decidualization through HOXA10 and BMPR2, contributing to inadequate endometrial receptivity.


Subject(s)
Decidua , Embryo Implantation , Endometrium , Homeobox A10 Proteins , MicroRNAs , Stromal Cells , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Embryo Implantation/genetics , Humans , Mice , Stromal Cells/metabolism , Endometrium/metabolism , Animals , Pregnancy , Adult , Decidua/metabolism , Homeobox A10 Proteins/genetics , Homeobox A10 Proteins/metabolism , Embryo Transfer
11.
Article in English | MEDLINE | ID: mdl-38502348

ABSTRACT

PURPOSE: Targeting inflammatory crosstalk between tumors and their microenvironment has emerged as a crucial method for suppressing pancreatic adenocarcinoma (PAAD) progression. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid known for its anti-inflammatory and antitumor pharmacological effects; however, the mechanism underlying PAAD suppression remains unclear. We aim to investigate the effects of BBR on PAAD progression and their underlying mechanisms. METHODS: The prognostic value of inflammation-related genes in PAAD was assessed using bioinformatics analyses, then the pharmacological effects and potential mechanisms of BBR on PAAD will be investigated in silico, in vitro, and in vivo. RESULTS: Fifty-eight prognostic inflammation-related genes were identified in PAAD, which were shown to have good sensitivity and specificity using a novel inflammation-related gene risk-prognosis prediction model. Among these, four candidate genes (CAPS3, PTGS2, ICAM1, and CXCR4) were predicted as targets of BBR in PAAD in silico. Molecular docking simulations showed that the four key targets docked well with BBR. Further BBR treatment suppressed cell proliferation, colony formation, and induced cell cycle arrest in vitro. Moreover, BBR exhibited a significant tumor-suppressive effect in murine subcutaneous xenografts without macroscopic hepatic and renal toxicities. In addition, BBR downregulated CAPS3, PTGS2, ICAM1, and CXCR4 protein expression. CONCLUSION: This study not only elucidated the prognostic value of inflammation-related genes in PAAD but also demonstrated the potential of BBR to inhibit PAAD by targeting these genes.

12.
J Med Chem ; 67(5): 3626-3642, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38381886

ABSTRACT

In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.


Subject(s)
Antineoplastic Agents , Naphthoquinones , Neoplasms , Humans , Protein Disulfide-Isomerases , Molecular Docking Simulation , Blood Platelets/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Neoplasms/metabolism
13.
Clin. transl. oncol. (Print) ; 26(2): 326-337, feb. 2024.
Article in English | IBECS | ID: ibc-230179

ABSTRACT

Hepatocellular carcinoma (HCC) caused by HBV, HCV infection, and other factors is one of the most common malignancies in the world. Although, percutaneous treatments such as surgery, ethanol injection, radiofrequency ablation, and transcatheter treatments such as arterial chemoembolization are useful for local tumor control, they are not sufficient to improve the prognosis of patients with HCC. External interferon agents that induce interferon-related genes or type I interferon in combination with other drugs can reduce the recurrence rate and improve survival in HCC patients after surgery. Therefore, in this review, we focus on recent advances in the mechanism of action of type I interferons, emerging therapies, and potential therapeutic strategies for the treatment of HCC using IFNs (AU)


Subject(s)
Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Prognosis , Treatment Outcome
14.
Biomater Sci ; 12(5): 1281-1293, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38252410

ABSTRACT

Acute liver injury (ALI) is a highly fatal condition characterized by sudden massive necrosis of liver cells, inflammation, and impaired coagulation function. Currently, the primary clinical approach for managing ALI involves symptom management based on the underlying causes. The association between excessive reactive oxygen species originating from macrophages and acute liver injury is noteworthy. Therefore, we designed a novel nanoscale phase variant contrast agent, denoted as PFP@CeO2@Lips, which effectively scavenges reactive oxygen species, and enables visualization through low intensity pulsed ultrasound activation. The efficacy of the nanoparticles in scavenging excess reactive oxygen species from RAW264.7 and protective AML12 cells has been demonstrated through in vitro and in vivo experiments. Additionally, these nanoparticles have shown a protective effect against LPS/D-GalN attack in C57BL/6J mice. Furthermore, when exposed to LIPUS irritation, the nanoparticles undergo liquid-gas phase transition and enable ultrasound imaging.


Subject(s)
Liver , Nanoparticles , Mice , Animals , Reactive Oxygen Species , Mice, Inbred C57BL , Liver/diagnostic imaging , Inflammation , Ultrasonic Waves
15.
Bioorg Med Chem Lett ; 99: 129623, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38242331

ABSTRACT

Dengue virus (DENV) is a significant global health threat, causing millions of cases worldwide each year. Developing antiviral drugs for DENV has been a challenging endeavor. Our previous study identified anti-DENV properties of two (-)-cytisine derivatives contained substitutions within the 2-pyridone core from a pool of 19 (-)-cytisine derivatives. This study aimed to expand on the previous research by investigating the antiviral potential of N-methylcytisine thio (mCy thio) derivatives against DENV, understanding the molecular mechanisms of antiviral activity for the active thio derivatives. The inhibitory assays on DENV-2-induced cytopathic effect and infectivity revealed that mCy thio derivatives 3 ((1R,5S)-3-methyl-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocine-8-thione) and 6 ((1S,5R)-3-methyl-2-thioxo-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one) were identified as the active compounds against both DENV-1 and DENV-2. Derivative 6 displayed robust antiviral activity against DENV-2, with EC50 values ranging from 0.002 to 0.005 µM in different cell lines. Derivative 3 also exhibited significant antiviral activity against DENV-2. The study found that these compounds are effective at inhibiting DENV-2 at both the entry stage (including virus attachment) and post-entry stages of the viral life cycle. The study also investigated the inhibition of the DENV-2 NS2B-NS3 protease activity by these compounds. Derivative 6 demonstrated notably stronger inhibition compared to mCy thio 3, revealing its dual antiviral action at both the entry and post-entry stages. Molecular docking simulations indicated that mCy thio derivatives 3 and 6 bind to the domain I and III of the DENV E protein, as well as the active of NS2B-NS3 protease, suggesting their molecular interactions with the virus. The study demonstrates the antiviral efficacy of N-methylcytisine thio derivatives against DENV. It provides valuable insights into the potential interactions between these compounds and viral target proteins, which could be useful in the development of antiviral drugs for DENV.


Subject(s)
Dengue Virus , Quinolizidine Alkaloids , Molecular Docking Simulation , Viral Envelope Proteins , Peptide Hydrolases , Serine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins
16.
Clin Transl Oncol ; 26(2): 326-337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37402970

ABSTRACT

Hepatocellular carcinoma (HCC) caused by HBV, HCV infection, and other factors is one of the most common malignancies in the world. Although, percutaneous treatments such as surgery, ethanol injection, radiofrequency ablation, and transcatheter treatments such as arterial chemoembolization are useful for local tumor control, they are not sufficient to improve the prognosis of patients with HCC. External interferon agents that induce interferon-related genes or type I interferon in combination with other drugs can reduce the recurrence rate and improve survival in HCC patients after surgery. Therefore, in this review, we focus on recent advances in the mechanism of action of type I interferons, emerging therapies, and potential therapeutic strategies for the treatment of HCC using IFNs.


Subject(s)
Carcinoma, Hepatocellular , Interferon Type I , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Prognosis , Treatment Outcome , Neoplasm Recurrence, Local
17.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010271

ABSTRACT

Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.


Subject(s)
Animals , Humans , Medicine, Chinese Traditional , Hot Temperature , Pancreatic Neoplasms/therapy , Models, Animal , Syndrome
18.
Eur J Pharmacol ; 964: 176295, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38154768

ABSTRACT

Pain is the cardinal symptom of many debilitating diseases and results in heavy health and economic burdens worldwide. Asarum (Asarum sieboldii Miq.) is a commonly used analgesic in Chinese medicine. However, the analgesic components and mechanisms of asarum in acute and chronic pain mice model remain unknown. In this study, we first generated asarum water extract and confirmed strong analgesic properties in mice in both the acute thermal and mechanical pain models, as well as in the complete Freund's adjuvant (CFA) induced chronic inflammatory pain model. Second, we identified higenamine as a major component of asarum and found that higenamine significantly inhibited thermal and mechanical induced acute pain and CFA induced chronic inflammatory pain. Then, using Trpv4-/- mice, we found that TRPV4 is necessary for CFA induced thermal and mechanical allodynia, and demonstrated that higenamine analgesia in the CFA model is partly through TRPV4 channel inhibition. Finally, we found that GSK1016790A, a TRPV4 agonist, induced calcium response was significantly inhibited by higenamine in both cultured DRG neurons and TRPV4 transfected HEK293 cells. Consistent with calcium imaging results, higenamine pretreatment also dose-dependently inhibited GSK1016790A induced acute pain. Taken together, our behavior and calcium imaging results demonstrate that the asarum component higenamine inhibits acute and chronic inflammatory pain by modulation of TRPV4 channels.


Subject(s)
Alkaloids , Chronic Pain , TRPV Cation Channels , Tetrahydroisoquinolines , Animals , Humans , Mice , Alkaloids/pharmacology , Alkaloids/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Calcium/metabolism , Chronic Pain/drug therapy , HEK293 Cells , Hyperalgesia/drug therapy , Inflammation/drug therapy , Leucine/analogs & derivatives , Sulfonamides/pharmacology , TRPV Cation Channels/antagonists & inhibitors
19.
Cancer Immunol Immunother ; 72(12): 4337-4354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932427

ABSTRACT

The placenta and tumors can exhibit a shared expression profile of proto-oncogenes. The basis of placenta-derived heat shock protein gp96, which induces prophylactic and therapeutic T cell responses against cancer including hepatocellular carcinoma (HCC), remains unknown. Here, we identified the associated long peptides from human placental gp96 using matrix-assisted laser desorption/ionization-time-of-flight and mass spectrometry and analyzed the achieved proteins through disease enrichment analysis. We found that placental gp96 binds to numerous peptides derived from 73 proteins that could be enriched in multiple cancer types. Epitope-harboring peptides from glypican 3 (GPC3) and paternally expressed gene 10 (PEG10) were the major antigens mediating anti-HCC T cell immunity. Molecular docking analysis showed that the GPC3- and PEG10-derived peptides, mainly obtained from the cytotrophoblast layer of the mature placenta, bind to the lumenal channel and client-bound domain of the gp96 dimer. Immunization with bone marrow-derived dendritic cells pulsed with recombinant gp96-GPC3 or recombinant gp96-PEG10 peptide complex induced specific T cell responses, and T cell transfusion led to pronounced growth inhibition of HCC tumors in nude mice. We demonstrated that the chaperone gp96 can capture antigenic peptides as an efficient approach for defining tumor rejection oncoantigens in the placenta and provide a basis for developing GPC3 and PEG10 peptide-based vaccines against HCC. This study provides insight into the underlying mechanism of the antitumor response mediated by embryonic antigens from fetal tissues, and this will incite more studies to identify potential tumor rejection antigens from placenta.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Female , Humans , Mice , Pregnancy , Antigens, Neoplasm , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Hepatocellular/therapy , DNA-Binding Proteins/metabolism , Glypicans , Liver Neoplasms/therapy , Mice, Nude , Molecular Docking Simulation , Peptides , Placenta/metabolism , RNA-Binding Proteins
20.
J Pharm Policy Pract ; 16(1): 134, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924079

ABSTRACT

BACKGROUND: Health supplements and natural products are widely used by the general public to support physical function and prevent disease. Additionally, with the advent of e-commerce, these products have become easily accessible to the general public. Although several theoretical models have been used to explain the use of health supplements and natural products, empirical evidence on how consumers make decisions to purchase online health supplements and natural products remains limited. METHODS: In this study, a grounded theory approach was used to develop a substantive theoretical model with the aim of investigating the decision-making process of consumers when purchasing health supplements and natural products online. Malaysian adult consumers who had purchased these products via the Internet were either purposively or theoretically sampled. A total of 18 virtual in-depth interviews (IDIs) were conducted to elicit participants' experiences and priorities in relation to this activity. All the IDIs were audio-recorded and transcribed verbatim. The data were analysed using open coding, focus coding and theoretical coding. The analytical interpretations and theoretical concepts were recorded in research memos. RESULTS: Consumers' decisions to purchase a health supplement or natural product over the Internet are based on a series of assessments regarding the perceived benefits and risks of this activity, which may be related to the product or the process. In the online marketplace, consumers attempt to choose products, online sellers, sales platforms and/or purchase mechanisms with lower perceived risk, which ultimately enhances their confidence in five elements related to the purchase: (1) product effectiveness, (2) product safety, (3) purchase convenience, (4) fair purchase and (5) online security. Consumers take an acceptable level of risk to purchase these products online, and this acceptable level is unique to each individual and is based on their perception of having control over the potential consequences if the worst-case scenario occurs. CONCLUSIONS: In this study, a substantive theoretical model is developed to demonstrate how consumers decide to purchase online health supplements and natural products by accepting an acceptable level of risk associated with the product or process. The emerging model is potentially transferable to other populations in similar contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...