Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454483

ABSTRACT

Concrete-filled steel tubes (CFSTs) are widely used in construction. To achieve composite action and take full advantage of the two materials, strain continuity at the steel-concrete interface is essential. When the concrete core and steel tube are not loaded simultaneously in regions such as beam or brace connections to the steel tubes of a CFST column, the steel-concrete bond plays a crucial role in load transfer. This study uses a validated finite-element model to investigate the bond-slip behavior between the steel tube and concrete in square CFST mega columns through a push-out analysis of eleven 1.2- × 1.2-m mega columns. The bond-slip behavior of CFST mega columns with and without mechanical connectors, including shear studs, rib plates, and connecting plates, is studied. The finite-element results indicate that the mechanical connectors substantially increased the maximum bond stress. Among the analyzed CFST mega columns, those with closely spaced shear studs and rib plate connectors with circular holes exhibited the highest bond stress, followed by plate connectors and widely spaced shear stud connectors. In the case of shear stud connectors, the stud diameter and spacing influenced the bond behavior more than the stud length. As the stud spacing decreased, the failure mode shifted from studs shearing off to outward buckling of the steel tube.

2.
Materials (Basel) ; 15(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454561

ABSTRACT

In recent years, studies that can maximize irregularity have increased as technological constraints weaken owing to the development of construction technology and the increase in demand for free-form structures. Considering this, free-form structures have been constructed using various materials. Concrete is considered most suitable for realizing an atypical shape because it is highly economical and can be assembled in a free form. However, not many studies have evaluated the structural performance of free-form concrete structures using free-form formwork 3D printer (F3D) technology, a 3D printing technology. Free-form structures must be designed to secure structural stability under both dead and live loads, as well as natural hazards such as wind, snow, and earthquakes. Therefore, in this study, we tested a free-form structure constructed by F3D printing using small-scale models that satisfy the similitude law with shaking tables. Furthermore, a finite element analysis was conducted to validate the small-scale tests. Lastly, the seismic performance of free-form concrete structures was evaluated based on the test and analysis results.

3.
Polymers (Basel) ; 14(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406306

ABSTRACT

In this era of the fourth industrial revolution, the integration of big data and 3D printing technology with the construction industry has maximized productivity. Currently, there is an active effort to research the optimal cladding structure through 3D printing technology to reduce production costs. This paper proposes a new type of 3D print curtain wall, using a high-strength ABS-M30 polymer panel, which is stronger than the standard acrylonitrile butadiene styrene (ABS) polymer, as an internally reinforced structure. This structure is fabricated via fused deposition modeling, a 3D printing method, to reduce the weight of the general cement panel. In addition, the shape of the polymer board was designed; three shapes were considered-O, W, and X types-which aided in further reducing the weight of the cladding. After comparing the center deformation of the structure through a lateral load test and finite element method analysis, the optimal model was selected. The measured data of the two methods at a design wind speed of 100% showed a difference of approximately 10%; however, at 150% of the design wind speed, the difference between the two sets of data increased to 27%.

4.
Polymers (Basel) ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35406360

ABSTRACT

In this study, the fire resistance performance of steel-polymer prefabricated composite floors, which have a sandwich-type structure, was assessed via standard fire tests and analyzed using finite element analysis. This form of analysis should consider two aspects, namely the thermal and structural fields, so as to simulate complicated material properties and large deformations. As previous studies have already conducted analysis in the thermal field, this study entailed only the structural analysis based on the temperature distributions obtained from the thermal analysis. The variables of the specimens were the thicknesses of the top and bottom steel plates and polymers. According to the analysis results, the top steel plate thickness had no impact on the stability ratings, a criterion for fire resistance performance, whereas the bottom steel plate showed a linear correlation with the stability rating. An equation for the stability rating of composite floors was proposed, and an equation for fire resistance performance was devised based on the insulation ratings, which were obtained from the thermal analysis results.

5.
Sensors (Basel) ; 22(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35408376

ABSTRACT

The development of unmanned aerial vehicles (UAVs) is expected to become one of the most commercialized research areas in the world over the next decade. Globally, unmanned aircraft have been increasingly used for safety surveillance in the construction industry and civil engineering fields. This paper presents an aerial image-based approach using UAVs to inspect cracks and deformations in buildings. A state-of-the-art safety evaluation method termed SMART SKY EYE (Smart building safety assessment system using UAV) is introduced; this system utilizes an unmanned airplane equipped with a thermal camera and programmed with various surveying efficiency improvement methods, such as thermography, machine-learning algorithms, and 3D point cloud modeling. Using this method, crack maps, crack depths, and the deformations of structures can be obtained. Error rates are compared between the proposed and conventional methods.


Subject(s)
Construction Industry , Unmanned Aerial Devices , Aircraft , Algorithms , Machine Learning
6.
Materials (Basel) ; 13(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297394

ABSTRACT

Owing to the development of new materials that enhance structural members in the construction field, steel-polymer composite floors have been developed and applied to steel structures. Similar to a sandwich system, steel-polymer composite floors consist of polymers between two steel plates. The structural performance of full-scale composite floors at ambient conditions has been investigated. Additionally, experiments were conducted on analytical models to predict both thermal behavior under fire, including fire resistance based on a small-scale furnace. To evaluate the fire resistance of full-scale steel-polymer composite floors, the thermal behavior and temperature distribution of composite floors should be investigated. Therefore, the temperature distributions of the full-scale composite floors were estimated using the verified analytical model in this study. Furthermore, to determine the fire design equation of steel-polymer composite floors in the thermal field, the correlations between variables were investigated, such as the thickness of top and bottom steel plates and polymers, as well as the fire resistance in the thermal field.

7.
Materials (Basel) ; 13(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198238

ABSTRACT

Compared to concrete or mortar-filled Buckling-Restrained Braces (BRBs), all-steel BRBs provide weight and fabrication time reductions. In particular, all-steel buckling braces with H-section cores are gaining attention in cases where large axial strength is required. In this paper, an all-steel BRB, called NOVEL (Noise, CO2 emission, Vibration, Energy dissipation and Labor), is presented. It comprises an H-section core encased in a square casing, and its behavior was studied through full-scale subassembly and brace tests, followed by a finite element parametric study. Two failure modes were observed: global buckling and flange buckling of the H-section core, which occurred in test specimens with Pcr/Py ratios of 1.68 and 4.91, respectively. Global buckling occurred when the maximum moment in the casing reached its yielding moment, although the test specimens had sufficient stiffness to prevent global buckling. Failure by core flange buckling occurred at a core strain of 1.2%. The finite element parametric study indicated that adjusting the width-to-thickness ratio of the core flange is more feasible than stiffening the flange or adjusting the unconstrained-length end stiffeners. The value of 5.06 was the minimum flange slenderness ratio that provided a stable hysteresis to the end of the loading protocol of the American Institute of Steel Construction standard.

8.
Materials (Basel) ; 13(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899851

ABSTRACT

Conventional slit dampers are widely used for the purpose of seismic retrofitting, however, the structure of these dampers is susceptible to fractures, due to stress concentration at the ends of the strips in the event of large earthquakes. To address this issue, a novel radius-cut coke-shaped strip damper featuring improved ductility is proposed herein. This damper was developed based on the moment distribution over the strip when both its ends were constrained. The height-to-width ratio of the strip was increased to induce bending rather than shear deformation, and the reduced beam section method was employed. A radius-cut section was used to intentionally focus the stress to induce the plastic hinge. This reduced the fracture fragility of the specimen, resulting in an increased inelastic deformation capacity. Cyclic loading tests were conducted to verify damping performance against earthquakes. Experiments and finite element analyses proved that the coke-shaped damper exhibits improved ductility. The final fracture occurred in the radius-cut section after sufficient energy dissipation during cyclic loading. The results also indicated further improvements in strength due to the membrane effect under cyclic loading, caused by the tensile resistance of the strip due to its constrained ends.

9.
Materials (Basel) ; 13(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987900

ABSTRACT

Hybrid floors infilled with polymeric materials between two steel plates were developed as a prefabricated floor system in the construction industry. However, the floor's fire resistance performance has not been investigated. To evaluate this, fire tests suggested by the Korean Standards should be performed. As these tests are costly and time consuming, the number of variables were limited. However, many variables can be investigated in other ways such as furnace tests and finite element analysis (FEA) with less cost and time. In this study, furnace tests on heated surface areas smaller than 1 m2 were conducted to investigate the thermal behavior of the hybrid floor at elevated temperatures. To obtain the reliability of the proposed thermal behavior analytical (TBA) model, verifications were conducted by FEAs. Thermal contact conductance including interfacial thermal properties between two materials was adopted in the TBA model, and the values at elevated temperatures were suggested based on thermo-gravimetric analyses results and verified by FEA. Errors between the tests and TBA model indicated that the model was adequate in predicting the temperature distribution in small-scale hybrids. Furthermore, larger furnace tests and analysis results were compared to verify the TBA model's application to different sized hybrid floors.

SELECTION OF CITATIONS
SEARCH DETAIL
...