Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17310, 2024.
Article in English | MEDLINE | ID: mdl-38699188

ABSTRACT

Background: Oat is a dual-purpose cereal used for grain and forage. The demand of oat has been increasing as the understanding of the nutritional, ecological, and economic values of oat increased. However, the frequent lodging during the growing period severely affect the high yielding potential and the quality of the grain and forage of oat. Methods: Therefore, we used the lodging-resistant variety LENA and the lodging-sensitive variety QY2 as materials, implementing four different planting densities: 2.25×106 plants/ha (D1), 4.5×106 plants/ha (D2), 6.75×106 plants/ha (D3), and 9×106 plants/ha (D4). At the appropriate growth and development stages, we assessed agronomic traits, mechanical characteristics, biochemical compositions, yield and its components. The study investigated the impact of planting density on the growth, lodging, and yield of oat, as well as their interrelationships. Additionally, we identified the optimal planting density to establish a robust crop structure. The research aims to contribute to the high-yield and high-quality cultivation of oat. Results: We observed that with increasing planting density, plant height, grass and grain yields of both varieties first increased and then decreased; root fresh weight, stem diameter, stem wall thickness, stem puncture strength, breaking strength, compressive strength, lignin and crude fiber contents, and yield components decreased; whereas the lodging rate and lodging coefficient increased. Planting density affects lodging by regulating plant height, height of center of gravity, stem wall thickness, internode length, and root fresh weight of oat. Additionally, it can impact stem mechanical strength by modulating the synthesis of lignin and crude fiber, which in turn affecting lodging resistance. Plant height, height of center of gravity, stem wall thickness, internode length, root fresh weight, breaking strength, compressive strength, lignin and crude fiber content, single-plant weight, grain yield and 1,000-grain weight can serve as important indicators for evaluating oat stem lodging resistance. We also noted that planting density affected grain yield both directly and indirectly (by affecting lodging); high density increased lodging rate and decreased grain yield, mainly by reducing 1,000-grain weight. Nonetheless, there was no significant relationship between lodging and grass yield. As appropriate planting density can increase the yield while maintaining good lodging resistance, in this study, 4.5×106 plants/ha (D2) was found to be the best planting density for oat in terms of lodging resistance and grass and grain yield. These findings can be used as a reference for oat planting.


Subject(s)
Avena , Avena/growth & development , Edible Grain/growth & development , Crop Production/methods , Agriculture/methods
2.
Front Plant Sci ; 15: 1382790, 2024.
Article in English | MEDLINE | ID: mdl-38654900

ABSTRACT

The TCP gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection. Oat (Avena sativa L.), is one of the world's staple grass forages, but no genome-wide analysis of TCP genes and their roles in low-nitrogen stress has been performed. This study identified the oat TCP gene family members using bioinformatics techniques. It analyzed their phylogeny, gene structure analysis, and expression patterns. The results showed that the AsTCP gene family includes 49 members, and most of the AsTCP-encoded proteins are neutral or acidic proteins; the phylogenetic tree classified the AsTCP gene family members into three subfamilies, and each subfamily has different conserved structural domains and functions. In addition, multiple cis-acting elements were detected in the promoter of the AsTCP genes, which were associated with abiotic stress, light response, and hormone response. The 49 AsTCP genes identified from oat were unevenly distributed on 18 oat chromosomes. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that the AsTCP genes had different expression levels in various tissues under low nitrogen stress, which indicated that these genes (such as AsTCP01, AsTCP03, AsTCP22, and AsTCP38) played multiple roles in the growth and development of oat. In conclusion, this study analyzed the AsTCP gene family and their potential functions in low nitrogen stress at the genome-wide level, which lays a foundation for further analysis of the functions of AsTCP genes in oat and provides a theoretical basis for the exploration of excellent stress tolerance genes in oat. This study provides an essential basis for future in-depth studies of the TCP gene family in other oat genera and reveals new research ideas to improve gene utilization.

3.
Front Microbiol ; 15: 1345235, 2024.
Article in English | MEDLINE | ID: mdl-38559358

ABSTRACT

Introduction: Modern agriculture emphasizes the design of cropping systems using ecological function and production services to achieve sustainability. The functional characteristics of plants (grasses vs. legumes) affect changes in soil microbial communities that drive agroecosystem services. Information on the relationship between legume-grass mixtures and soil microorganisms in different ecological zones guides decision-making toward eco-friendly and sustainable forage production. However, it is still poorly understood how cropping patterns affect soil microbial diversity in alpine grasslands and whether this effect varies with altitude. Methods: To fill this gap in knowledge, we conducted a field study to investigate the effects of growing oats (Avena sativa L.), forage peas (Pisum sativum L.), common cornflower (Vicia sativa L.), and fava beans (Vicia faba L.) in monocultures and mixtures on the soil microbial communities in three ecological zones of the high alpine zone. Results: We found that the fungal and bacterial community structure differed among the cropping patterns, particularly the community structure of the legume mixed cropping pattern was very different from that of monocropped oats. In all ecological zones, mixed cropping significantly (p < 0.05) increased the α-diversity of the soil bacteria and fungi compared to oat monoculture. The α-diversity of the soil bacteria tended to increase with increasing elevation (MY [2,513 m] < HZ [2,661 m] < GN [3,203 m]), while the opposite was true for fungi (except for the Chao1 index in HZ, which was the lowest). Mixed cropping increased the abundance of soil fungi and bacteria across ecological zones, particularly the relative abundances of Nitrospira, Nitrososphaera, Phytophthora, and Acari. Factors affecting the bacterial community structure included the cropping pattern, the ecological zone, water content, nitrate-nitrogen, nitrate reductase, and soil capacity, whereas factors affecting fungal community structure included the cropping pattern, the ecological zone, water content, pH, microbial biomass nitrogen, and catalase. Discussion: Our study highlights the variation in soil microbial communities among different in alpine ecological regions and their resilience to cropping systems. Our results also underscore that mixed legume planting is a sustainable and effective forage management practice for the Tibetan Plateau.

4.
Front Plant Sci ; 14: 1280771, 2023.
Article in English | MEDLINE | ID: mdl-37929174

ABSTRACT

Introduction: Information on the relationship between soil quality and forage yield of legume-grass mixtures in different ecological regions can guide decision-making to achieve eco-friendly and sustainable pasture production. This study's objective was to assess the effects of different cropping systems on soil physical properties, nitrogen fractions, enzyme activities, and forage yield and determine suitable legume-grass mixtures for different ecoregions. Methods: Oats (Avena sativa L.), forage peas (Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.) were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats and common vetch; YC: oats and fava beans) in three ecological regions (HZ: Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a split-plot design. Results: The results showed that the forage yield decreased with increasing altitude, with an order of GN (3203 m a.s.l.; YH 8.89 t·ha-1) < HZ (2661 m; YH 9.38 t·ha-1) < MY (2513m; YH 9.78 t·ha-1). Meanwhile, the forage yield was higher for mixed crops than for single crops in all ecological regions. In the 0-10 cm soil layer, the contents of total nitrogen (TN), microbial biomass nitrogen (MBN), soil organic matter (SOM), soluble organic nitrogen (SON), urease (UE), nitrate reductase (NR), sucrase (SC), and bacterial community alpha diversity, as well as relative abundance of dominant bacteria, were higher for mixed crops than for oats unicast. In addition, soil physical properties, nitrogen fractions, and enzyme activities varied in a wider range in the 0-10 cm soil layer than in the 10-20 cm layer, with larger values in the surface layer than in the subsurface layer. MBN, SON, UE, SC and catalase (CAT) were significantly and positively correlated with forage yield (P < 0.05). Ammonium nitrogen (ANN), nitrate nitrogen (NN), SOM and cropping systems (R) were significantly and positively correlated with Shannon and bacterial community (P < 0.05). The highest yields in the three ecological regions were 13.00 t·ha-1 for YS in MY, 10.59 t·ha-1 for YC in GN, and 10.63 t·ha-1 for YS in HZ. Discussion: We recommend planting oats and forage peas in the Qilian Mountains Basin, oats and fava beans in the Sanjiangyuan District, and oats and forage peas in Huangshui valley. Our results provide new insights into eco-friendly, sustainable, and cost-effective forage production in the Qinghai Alpine Region in China.

5.
PeerJ ; 11: e16181, 2023.
Article in English | MEDLINE | ID: mdl-37810776

ABSTRACT

Abscisic acid (ABA) is a phytohormone that plays an important role in plant growth and development. Meanwhile, ABA also plays a key role in the plant response to abiotic stressors such as drought and high salinity. The pyrabactin resistance 1-like (PYR/PYL) protein family of ABA receptors is involved in the initial step of ABA signal transduction. However, no systematic studies of the PYL family in "Avena sativa, a genus Avena in the grass family Poaceae," have been conducted to date. Thus, in this study, we performed a genome-wide screening to identify PYL genes in oat and characterized their responses to drought stress. A total of 12 AsPYL genes distributed on nine chromosomes were identified. The phylogenetic analysis divided these AsPYLs into three subfamilies, based on structural and functional similarities. Gene and motif structure analysis of AsPYLs revealed that members of each subfamily share similar gene and motif structure. Segmental duplication appears to be the driving force for the expansion of PYLs, Furthermore, stress-responsive AsPYLs were detected through RNA-seq analysis. The qRT-PCR analysis of 10 AsPYL genes under drought, salt, and ABA stress revealed that AsPYL genes play an important role in stress response. These data provide a reference for further studies on the oat PYL gene family and its function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Avena/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phylogeny , Carrier Proteins/genetics
6.
Genes (Basel) ; 13(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36292803

ABSTRACT

The WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat (Avena sativa L.) have been conducted to date. The recently published complete genome sequence of oat enables the systematic analysis of the AsWRKYs. Based on a genome-wide study of oat, we identified 162 AsWRKYs that were unevenly distributed across 21 chromosomes; a phylogenetic tree of WRKY domains divided these genes into three groups (I, II, and III). We also analyzed the gene duplication events and identified a total of 111 gene pairs that showed strong purifying selection during the evolutionary process. Surprisingly, almost all genes evolved after the completion of subgenomic differentiation of hexaploid oat. Further studies on the functional analysis indicated that AsWRKYs were widely involved in various biological processes. Notably, expression patterns of 16 AsWRKY genes revealed that the response of AsWRKYs were affected by stress level and time. In conclusion, this study provides a reference for further analysis of the role of WRKY transcription factors in species evolution and functional differentiation.


Subject(s)
Avena , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Avena/genetics , Avena/metabolism , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study
7.
Arch Anim Nutr ; 76(3-6): 175-190, 2022.
Article in English | MEDLINE | ID: mdl-36661072

ABSTRACT

To evaluate the effects of temperature and lactic acid bacteria (LAB) inoculants on oat silage in Loess Plateau of China, oat was harvested at dough stage, inoculated without (Control) or with LAB inoculants Synlac I (SLI, Lactobacillus plantarum and Pedioccocus acidilactici) and a selected strain HT1 (L. rhamnosus) and ensiled at 25°C (T25), 35°C (T35) and 45°C (T45). The fermentation quality was measured after 60 d of ensiling and the aerobic exposure was conducted at 30°C for 9 d. The results showed that control silage (stored at 25°C) had better fermentation quality than that ensiled at 35°C or 45°C. High temperature of 45°C resulted in sharp decreases in LAB counts and lactic acid concentration and increases in pH and NH3-N concentration in the control group. Inoculation improved the fermentation quality, and HT1 was more effective than SLI at 35°C and 45°C, while SLI showed better performance at 25°C. All silages displayed mild fluctuation for all treatments at the first 3 d of aerobic exposure, and significant differences were observed among treatments after that. Both control and inoculated silages stored at 25°C showed a sharp pH increase, while HT1 treated silages stored at 35°C and 45°C maintained stable pH and better fermentation quality during the aerobic exposure. In conclusion, SLI was suitable for oat silage fermentation at normal atmospheric temperature (25°C), while HT1 was more effective in improving DM recovery, fermentation quality and aerobic stability of oat silage at high temperature during summer in the Loess Plateau of China.


Subject(s)
Agricultural Inoculants , Silage , Animals , Silage/analysis , Lactobacillus , Avena , Temperature , Animal Feed/analysis , Diet/veterinary , Fermentation , Lactic Acid
8.
J Anim Sci ; 96(8): 3151-3160, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-29846606

ABSTRACT

Oat is a main feed crop in high- altitude areas of western China, but few studies have been done on its silage making. The aim of this study was to evaluate the effect of silage additives on fermentation, aerobic stability, and nutritive value of different oat varieties (OV) grown in the Qinghai-Tibet Plateau of China. Two OV (Avena sativa L. cv. Longyan No.1 (OVL1) and Avena sativa L. cv. Longyan No.3 (OVL3)) were planted in a randomized complete block design, harvested at early dough stage with 32.6% and 34.1% DM, respectively. The fresh material was chopped to 2-cm length and treated with additives (0, Sila-Mix (MIX), Sila-Max (MAX) in a 2 × 3 factorial arrangement of treatments with three replicates. Both additives contained a mixture of lactic acid bacteria and supplied a final application rate of 2.5 × 108 of lactic acid bacteria per kg of fresh forage weight. After 60 d of ensiling, the number of lactic acid bacteria in treated silages was about 10-fold greater than the control and generally resulted in a lower pH and ammonia-nitrogen (P < 0.001), greater total acids and ratios of lactic acid/acetic acid (P < 0.001), and DM recovery (P = 0.028). Treatment with additives also decreased (P < 0.001) the number of yeasts, which resulted in marked (P < 0.001) improvements in aerobic stability with the effect being greatest with MAX. Both additives improved (P ≤ 0.036) the 48-h in situ DM digestion in OVL1, but not in OVL3 (P ≥ 0.052). Treatment with both additives also increased (P ≤ 0.003) NDF digestion in OVL1 while it was improved (P < 0.001) only by MAX in OVL3. In contrast, the additives did not affect (P ≥ 0.088) in situ hemicellulose digestion in OVL1, but it was improved (P = 0.048) by MIX and further improved (P = 0.002) by MAX in OVL3. Treatment with MAX improved yields of digestible DM and digestible NDF in both varieties. Dry matter recovery was not affected (P = 0.121) by variety. Compared to CTRL, silage treated with MAX had a greater (P = 0.015) DM recovery (96.7% vs. 93.9%). Inoculation improved (P < 0.001) aerobic stability. The MAX was the most effective for both varieties, while MIX was intermediate and was more effective in OVL3 than OVL1 silage. The results also showed that in Qinghai-Tibet Plateau, compared to OVL1, OVL3 resulted in greater (P ≤ 0.002) yields of digestible nutrients; specifically, treated with MAX improved silage fermentation efficiency, DM recovery, and provided excellent aerobic stability for feeding to ruminants.


Subject(s)
Avena , Food Storage/methods , Nutritive Value , Silage/analysis , Fermentation , Lactic Acid/metabolism , Tibet , Yeasts/growth & development
9.
Food Chem ; 250: 134-139, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29412902

ABSTRACT

A direct competitive biomimetic immunosorbent assay method based on molecularly imprinted polymer was developed for the determination of trichlorfon. A CdSe/ZnS quantum dot label was used as the marker. The hydrophilic imprinted film was synthesized directly on the surface of a 96-well plate, and characterized by Fourier-transform infrared spectroscopy and thermo-gravimetric analyses. The method exhibited high stability, selectivity, and sensitivity. Under optimal conditions, the limits of detection and sensitivity of the biomimetic immunosorbent assay method were 9.0 µg L-1 and 5.0 mg L-1 (0.1 mg kg-1 and 62.5 mg kg-1 for vegetable sample), respectively. Low cross-reactivity values of 19.2% and 15.6% were obtained for the structural analogues. Spinach and rape samples spiked with trichlorfon were extracted and determined by this method with recoveries ranging from 83.6% to 91.1%. The method was applied for the detection of trichlorfon residues in leek and cucumber samples, and results correlated well with those obtained using GC.


Subject(s)
Biomimetics/methods , Food Analysis/methods , Immunosorbent Techniques , Pesticide Residues/analysis , Quantum Dots/chemistry , Trichlorfon/analysis , Vegetables/chemistry , Cadmium Compounds/chemistry , Food Contamination/analysis , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...