Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915506

ABSTRACT

Accurate and timely diagnosis of oral squamous cell carcinoma (OSCC) is crucial in preventing its progression to advanced stages with a poor prognosis. As such, the construction of sensors capable of detecting previously established disease biomarkers for the early and non-invasive diagnosis of this and many other conditions has enormous therapeutic potential. In this work, we apply synthetic biology techniques for the development of a whole-cell biosensor (WCB) that leverages the physiology of engineered bacteria in vivo to promote the expression of an observable effector upon detection of a soluble molecule. To this end, we have constructed a bacterial strain expressing a novel chimeric transcription factor (Sphnx) for the detection of N-acetylneuraminic acid (Neu5Ac), a salivary biomolecule correlated with the onset of OSCC. This WCB serves as the proof-of-concept of a platform that can eventually be applied to clinical screening panels for a multitude of oral and systemic medical conditions whose biomarkers are present in saliva.

2.
Cell Cycle ; 23(6): 629-644, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38836592

ABSTRACT

In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of ß-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.


Subject(s)
Alkynes , Cellular Senescence , Glycine , Hepatic Stellate Cells , Hydrogen Sulfide , Morpholines , Organothiophosphorus Compounds , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Cellular Senescence/drug effects , Morpholines/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Alkynes/pharmacology , Organothiophosphorus Compounds/pharmacology , Rats , Male , Cystathionine gamma-Lyase/metabolism , Cell Proliferation/drug effects , Chromones/pharmacology , Collagen Type I/metabolism , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Signal Transduction/drug effects , Senescence-Associated Secretory Phenotype , Tumor Suppressor Protein p53/metabolism
3.
Anticancer Res ; 44(6): 2567-2575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821612

ABSTRACT

BACKGROUND/AIM: Protein phosphatase and tensin homolog (PTEN) is a tumor suppressor protein with potential to be a new biotechnological drug for PTEN-deficient cancer treatment. This study aimed to develop PTEN-based chimeric proteins (CPP-PTEN-THP) for human epidermal growth factor receptor 2 (HER2)-positive breast cancer treatment, addressing current limitations like inadequate delivery, poor tumor penetration, and low selectivity, while assessing their potential HER2-specific anticancer effects. MATERIALS AND METHODS: pCEFL-EGFP vector was used for both TAT-PTEN-LTV and KLA-PTEN-LTV construction. Non-contact co-cultures were employed using HEK-293T cells for protein expression, and HCC-1954 and MCF-7 cell lines for cytotoxicity testing. Protein detection was analyzed by western blotting and a docking prediction analysis was performed to infer the interactions. RESULTS: Endogenous and recombinant PTEN protein expression was confirmed in cell lysates. A 54-kDa signal matching the theoretical size of PTEN was detected, showing a greater level in TAT-PTEN-LTV (215.1±26.45%) and KLA-PTEN-LTV (129.2±1.44%) compared to endogenous PTEN. After the noncontact co-culture method, cytotoxic studies showed HCC-1954 preferential cell inhibition growth, with 25.95±0.9% and 12.25±1.29% inhibition by KLA-PTEN-LTV and TAT-PTEN-LTV respectively, compared to MCF-7 cells. An LTV-HER2 interaction model was proposed, inferring that LTV interactions are mainly due to the Pro, Trp, and Tyr residues that target HER2. CONCLUSION: The developed PTEN-based chimeric proteins have HER2-specific anticancer activity against HCC-1954 cells.


Subject(s)
PTEN Phosphohydrolase , Receptor, ErbB-2 , Recombinant Fusion Proteins , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HEK293 Cells , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Molecular Docking Simulation , Coculture Techniques
4.
Biomedicines ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893201

ABSTRACT

Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-ß, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.

5.
Front Cell Infect Microbiol ; 13: 1110600, 2023.
Article in English | MEDLINE | ID: mdl-37260701

ABSTRACT

Entamoeba histolytica (E. histolytica) is a protozoan responsible for intestinal amebiasis in at least 500 million people per year, although only 10% of those infected show severe symptoms. It is known that E. histolytica captures molecules released during the host immune response through membrane receptors that favor its pathogenetic mechanisms for the establishment of amebic invasion. It has been suggested that E. histolytica interacts with acetylcholine (ACh) through its membrane. This promotes the increase of virulence factors and diverse mechanisms carried out by the amoeba to produce damage. The aim of this study is to identify a membrane receptor in E. histolytica trophozoites for ACh. Methods included identification by colocalization for the ACh and Gal/GalNAc lectin binding site by immunofluorescence, western blot, bioinformatic analysis, and quantification of the relative expression of Ras 5 and Rab 7 GTPases by RT-qPCR. Results show that the Gal/GalNAc lectin acts as a possible binding site for ACh and this binding may occur through the 150 kDa intermediate subunit. At the same time, this interaction activates the GTPases, Ras, and Rab, which are involved in the proliferation, and reorganization of the amoebic cytoskeleton and vesicular trafficking. In conclusion, ACh is captured by the parasite, and the interaction promotes the activation of signaling pathways involved in pathogenicity mechanisms, contributing to disease and the establishment of invasive amebiasis.


Subject(s)
Amebiasis , Dysentery, Amebic , Entamoeba histolytica , Humans , Entamoeba histolytica/metabolism , Lectins/metabolism , Receptors, Cholinergic/metabolism , Protozoan Proteins/metabolism , Dysentery, Amebic/parasitology
6.
J Parasitol Res ; 2023: 3713368, 2023.
Article in English | MEDLINE | ID: mdl-37143958

ABSTRACT

Acanthamoeba griffini is known to cause amoebic keratitis (AK); its main causes are inadequate hygiene when contact lenses are handled and/or its prolonged use at night, as well as the use of contact lenses during underwater activities. The most used treatment for AK is the combination of propamidine isethionate combined with polyhexamethylene biguanide, which disrupts the cytoplasmic membrane, and damages cellular components and respiratory enzymes. We proposed an immunoconjugate treatment obtained from Acanthamoeba immunized rabbit serum combined with propamidine isethionate; the corneas of hamsters inoculated with A. griffini (MYP2004) were treated with the combined, at 1, 2, and 3 weeks. Propamidine isethionate is frequently used for AK treatment, in vivo study we are found IL-1ß and IL-10 expression and caspase 3 activity is significantly increased with respect to the group that was inoculated with the amoeba without receiving any treatment, suggesting that it may be an effect of the toxicity of this drug on the corneal tissue. Application of the immunoconjugate showed enhanced amoebicidal and anti-inflammatory activities, with comparison to propamidine isethionate only. The aim of this study is to evaluate the effect of the immunoconjugate of propamidine isethionate and polyclonal antibodies as a treatment of AK in golden hamsters (Mesocricetus auratus).

7.
Int J Exp Pathol ; 104(4): 209-222, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36964979

ABSTRACT

Arginine vasopressin (AVP) is a naturally occurring hormone synthesized in the hypothalamus. AVP demonstrates pro-fibrotic effects as it stimulates hepatic stellate cells to secrete transforming growth factor-ß (TGF-ß) and collagen. Previous work in liver cirrhotic (CCL4 -induced) hamsters demonstrated that AVP deficiency induced by neurointermediate pituitary lobectomy (NIL) can restore liver function. Therefore, we hypothesized that liver fibrosis would decrease in portocaval anastomosis (PCA) rats, which model chronic liver diseases, when they are treated with the V1a-V2 AVP receptor antagonist conivaptan (CV). In this study, changes in liver histology and gene expression were analysed in five experimental groups: control, PCA, NIL, PCA + NIL and PCA + CV, with NIL surgery or CV treatment administered 8 weeks after PCA surgery. Body weight gain was assessed on a weekly basis, and serum liver function, liver weight and liver glycogen content were assessed following euthanasia. Most PCA-induced phenotypes were reverted to normal levels following AVP-modelled deficiency, though hypoglycemia and ammonium levels remained elevated in the PCA + CV group. Liver histopathological findings showed a significant reversal in collagen content, less fibrosis in the triad and liver septa and increased regenerative nodules. Molecular analyses showed that the expression of fibrogenic genes (TGF-ß and collagen type I) decreased in the PCA + CV group. Our findings strongly suggest that chronic NIL or CV treatment can induce a favourable microenvironment to decrease liver fibrosis and support CV as an alternative treatment for liver fibrosis.


Subject(s)
Diabetes Insipidus, Neurogenic , Receptors, Vasopressin , Cricetinae , Rats , Animals , Receptors, Vasopressin/genetics , Antidiuretic Hormone Receptor Antagonists/pharmacology , Arginine Vasopressin/pharmacology , Liver Cirrhosis/drug therapy , Anastomosis, Surgical , Arginine
8.
Cancer Diagn Progn ; 3(2): 183-188, 2023.
Article in English | MEDLINE | ID: mdl-36875302

ABSTRACT

BACKGROUND/AIM: One of the hallmarks of cancer is deregulation of multiple signaling pathways, which can lead to uncontrolled proliferation and migration of cells. Over-expression and mutations in human epidermal growth factor receptor 2 (HER2) can lead to overactivation of these pathways, potentially developing cancer in different tissues, including breast tissue. IGF-1R and ITGB-1 are two receptors that have been linked to cancer development. Therefore, the aim of this study was to investigate the effects of silencing of the corresponding genes using specific siRNAs. MATERIALS AND METHODS: Transient silencing of HER2, ITGB-1, and IGF-1R was conducted using siRNAs and expression was quantified by reverse transcription-quantitative polymerase chain reaction. Viability in human breast cancer cells SKBR3, MCF-7, and HCC1954 and cytotoxicity in HeLa cells were tested using WST-1 assay. RESULTS: The use of anti-HER2 siRNAs in a breast cancer cell line over-expressing HER2 (SKBR3) led to a decrease in cell viability. However, silencing of ITGB-1 and IGF-1R in the same cell line had no significant effects. Silencing of any of the genes encoding any of the three receptors in MCF-7, HCC1954, and HeLa had no significant effects. CONCLUSION: Our results provide evidence towards using siRNAs against HER2-positive breast cancer. Silencing of ITGB-1 and IGF-R1 did not significantly inhibit the growth of SKBR3 cells. Therefore, there is need for testing the effect of silencing ITGB-1 and IGF-R1 in other cancer cell lines over-expressing these biomarkers and explore their potential use in cancer therapy.

9.
Ann Med ; 55(1): 543-557, 2023 12.
Article in English | MEDLINE | ID: mdl-36826975

ABSTRACT

The sympathetic nervous system and the immune system are responsible for producing neurotransmitters and cytokines that interact by binding to receptors; due to this, there is communication between these systems. Liver immune cells and nerve fibres are systematically distributed in the liver, and the partial overlap of both patterns may favour interactions between certain elements. Dendritic cells are attached to fibroblasts, and nerve fibres are connected via the dendritic cell-fibroblast complex. Receptors for most neuroactive substances, such as catecholamines, have been discovered on dendritic cells. The sympathetic nervous system regulates hepatic fibrosis through sympathetic fibres and adrenaline from the adrenal glands through the blood. When there is liver damage, the sympathetic nervous system is activated locally and systemically through proinflammatory cytokines that induce the production of epinephrine and norepinephrine. These neurotransmitters bind to cells through α-adrenergic receptors, triggering a cellular response that secretes inflammatory factors that stimulate and activate hepatic stellate cells. Hepatic stellate cells are key in the fibrotic process. They initiate the overproduction of extracellular matrix components in an active state that progresses from fibrosis to liver cirrhosis. It has also been shown that they can be directly activated by norepinephrine. Alpha and beta adrenoblockers, such as carvedilol, prazosin, and doxazosin, have recently been used to reverse CCl4-induced liver cirrhosis in rodent and murine models.KEY MESSAGESNeurotransmitters from the sympathetic nervous system activate and increase the proliferation of hepatic stellate cells.Hepatic fibrosis and cirrhosis treatment might depend on neurotransmitter and hepatic nervous system regulation.Strategies to reduce hepatic stellate cell activation and fibrosis are based on experimentation with α-adrenoblockers.


Subject(s)
Hepatic Stellate Cells , Neuroimmunomodulation , Mice , Humans , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Liver/metabolism , Norepinephrine/metabolism , Fibrosis , Cytokines , Neurotransmitter Agents/metabolism
10.
Reprod Domest Anim ; 58(4): 560-563, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36645318

ABSTRACT

Eighty-five sperm samples were cryopreserved and SYBR14/PI, MitoTracker Deep Red FM, FITC-PSA/PI and chlortetracycline were used for imaging flow cytometry evaluation of sperm viability, mitochondrial membrane potential (MMP), acrosome integrity and sperm capacitation, respectively. Sperm motility was also registered. Sperm motility (46.1 ± 7.7 vs. 24.1% ± 6.5%), sperm viability (49.8 ± 11.5 vs. 32.3% ± 9.6%) and high MMP (49.8% ± 12.4% vs. 34.9% ± 9.9%) decreased significantly (p < .05) during cryopreservation process, in contrast to acrosome-reacted in viable spermatozoa (1.0% ± 1.6% vs. 1.0% ± 1.0%) and sperm capacitation (10.0 ± 9.8 vs. 8.2% ± 12.4%) that were similar (p > .05) before and after cryopreservation. Positive correlations were found between sperm motility versus high MMP (r = .63), sperm motility versus sperm viability (r = .67) and sperm viability versus high MMP (r = .88). In conclusion, cryopreservation of alpaca spermatozoa is related to a decrease in sperm motility, sperm viability and high MMP, meanwhile acrosome integrity and sperm capacitation are not affected.


Subject(s)
Camelids, New World , Semen Preservation , Male , Animals , Acrosome , Flow Cytometry/veterinary , Sperm Capacitation , Membrane Potential, Mitochondrial , Semen , Sperm Motility , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa , Cryopreservation/veterinary , Cryopreservation/methods
11.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36670975

ABSTRACT

A molecular characterization of the main phytochemicals and antioxidant activity of Opuntia robusta (OR) fruit extract was carried out, as well as an evaluation of its hepatoprotective effect against diclofenac (DF)-induced acute liver injury was evaluated. Phenols, flavonoids and betalains were quantified, and antioxidant characterization was performed by means of the ABTS•+, DPPH and FRAP assays. UPLC-QTOF-MS/MS was used to identify the main biocompounds present in OR fruit extract was carried out via. In the in vivo model, groups of rats were treated prophylactically with the OR fruit extract, betanin and N-acteylcysteine followed by a single dose of DF. Biochemical markers of oxidative stress (MDA and GSH) and relative gene expression of the inducible antioxidant response (Nrf2, Sod2, Hmox1, Nqo1 and Gclc), cell death (Casp3) and DNA repair (Gadd45a) were analyzed. Western blot analysis was performed to measure protein levels of Nrf2 and immunohistochemical analysis was used to assess caspase-3 activity in the experimental groups. In our study, the OR fruit extract showed strong antioxidant and cytoprotective capacity due to the presence of bioactive compounds, such as betalain and phenols. We conclude that OR fruit extract or selected components can be used clinically to support patients with acute liver injury.

12.
Front Genet ; 14: 1306600, 2023.
Article in English | MEDLINE | ID: mdl-38299096

ABSTRACT

Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.

13.
Plants (Basel) ; 11(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956519

ABSTRACT

Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats. Aminotransferases, reduced glutathione (GSH) and histopathology were evaluated. Or contained 436.5 ± 57 mg of Betacyanins equivalents/L., 793 mg of catechin equivalents (CAE)/100 g for flavonoids, 1118 mg of gallic acid equivalents (GAE)/100 g for total phenols, 141.14 mg/100 g for vitamin C and 429.9 µg/100 g for vitamin E. The antioxidant capacity of Or was: 2.27 mmol of Trolox® equivalents (TE)/L (DPPH), 62.2 ± 5.0 µmol TE/g (ABTS•+), 80.2 ± 11.7 µmol TE/g (FRAP), 247.9 ± 15.6 µmol TE/g (AAPH) and 15.0% of H2O2 elimination. An increase (p < 0.05) of aminotransferases and a decrease (p < 0.05) of hepatic GSH was observed in the TAA group compared to the control and the concomitant groups. Histopathology showed changes in the normal architecture of the liver treated with TAA compared to the concomitant treatments. Or contains bioactive components with antioxidant capacity, which can reduce fibrotic liver damage.

14.
Oxid Med Cell Longev ; 2022: 6085515, 2022.
Article in English | MEDLINE | ID: mdl-35189631

ABSTRACT

Doxazosin and carvedilol have been evaluated as an alternative treatment against chronic liver lesions and for their possible role during the regeneration of damage caused by liver fibrosis in a hamster model. However, these drugs have been reported to induce morphological changes in hepatocytes, affecting the recovery of liver parenchyma. The effects of these α/𝛽 adrenoblockers on the viability of hepatocytes are unknown. Herein, we demonstrate the protective effect of curcumin against the possible side effects of doxazosin and carvedilol, drugs with proven antifibrotic activity. After pretreatment with 1 µM curcumin for 1 h, HepG2 cells were exposed to 0.1-25 µM doxazosin or carvedilol for 24, 48, and 72 h. Cell viability was assessed using the MTT assay and SYTOX green staining. Morphological changes were detected using the hematoxylin and eosin (H&E) staining and scanning electron microscopy (SEM). An expression of apoptotic and oxidative stress markers was analyzed using reverse transcription-quantitative PCR (RT-qPCR). The results indicate that doxazosin decreases cell viability in a time- and dose-dependent manner, whereas carvedilol increases cell proliferation; however, curcumin increases or maintains cell viability. SEM and H&E staining provided evidence that doxazosin and carvedilol induced morphological changes in HepG2 cells, and curcumin protected against these effects, maintaining the morphology in 90% of treated cells. Furthermore, curcumin positively regulated the expression of Nrf2, HO-1, and SOD1 mRNAs in cells treated with 0.1 and 0.5 µM doxazosin. Moreover, the Bcl-2/Bax ratio was higher in cells that were treated with curcumin before doxazosin or carvedilol. The present study demonstrates that curcumin controls doxazosin- and carvedilol-induced cytotoxicity and morphological changes in HepG2 cells possibly by overexpression of Nrf2.


Subject(s)
Carvedilol/toxicity , Curcumin/pharmacology , Doxazosin/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
15.
Vet Res Commun ; 46(2): 459-470, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34997440

ABSTRACT

Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 µM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 µM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 µM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 µM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.


Subject(s)
Curcumin , Lacticaseibacillus rhamnosus , Lactococcus lactis , Aeromonas hydrophila , Animals , Anti-Bacterial Agents/pharmacology , Curcumin/pharmacology , Pediococcus pentosaceus
16.
Mech Ageing Dev ; 201: 111617, 2022 01.
Article in English | MEDLINE | ID: mdl-34958827

ABSTRACT

BACKGROUND: Activated hepatic stellate cells (aHSCs) are the main effector cells during liver fibrogenesis. α-1 adrenergic antagonist doxazosin (DX) was shown to be anti-fibrotic in an in vivo model of liver fibrosis (LF), but the mechanism remains to be elucidated. Recent studies suggest that reversion of LF can be achieved by inducing cellular senescence characterized by irreversible cell-cycle arrest and acquisition of the senescence-associated secretory phenotype (SASP). AIM: To elucidate the mechanism of the anti-fibrotic effect of DX and determine whether it induces senescence. METHODS: Primary culture-activated rat HSCs were used. mRNA and protein expression were measured by qPCR and Western blot, respectively. Cell proliferation was assessed by BrdU incorporation and xCelligence analysis. TGF-ß was used for maximal HSC activation. Norepinephrine (NE), PMA and m-3M3FBS were used to activate alpha-1 adrenergic signaling. RESULTS: Expression of Col1α1 was significantly decreased by DX (10 µmol/L) at mRNA (-30 %) and protein level (-50 %) in TGF-ß treated aHSCs. DX significantly reduced aHSCs proliferation and increased expression of senescence and SASP markers. PMA and m-3M3FBS reversed the effect of DX on senescence markers. CONCLUSION: Doxazosin reverses the fibrogenic phenotype of aHSCs and induces the senescence phenotype.


Subject(s)
Cellular Senescence , Doxazosin/pharmacology , Hepatic Stellate Cells , Liver Cirrhosis , Senescence-Associated Secretory Phenotype/physiology , Signal Transduction/drug effects , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic alpha-Agonists/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Norepinephrine/pharmacology , Rats , Receptors, Adrenergic, alpha-1/metabolism , Sulfonamides/pharmacology
17.
J Immunol Res ; 2021: 5529784, 2021.
Article in English | MEDLINE | ID: mdl-34926704

ABSTRACT

Liver diseases, including cirrhosis, viral hepatitis, and hepatocellular carcinoma, account for approximately two million annual deaths worldwide. They place a huge burden on the global healthcare systems, compelling researchers to find effective treatment for liver fibrosis-cirrhosis. Portacaval anastomosis (PCA) is a model of liver damage and fibrosis. Arginine vasopressin (AVP) has been implicated as a proinflammatory-profibrotic hormone. In rats, neurointermediate pituitary lobectomy (NIL) induces a permanent drop (80%) in AVP serum levels. We hypothesized that AVP deficiency (NIL-induced) may decrease liver damage and fibrosis in a rat PCA model. Male Wistar rats were divided into intact control (IC), NIL, PCA, and PCA+NIL groups. Liver function tests, liver gene relative expressions (IL-1, IL-10, TGF-ß, COLL-I, MMP-9, and MMP-13), and histopathological assessments were performed. In comparison with those in the IC and PCA groups, bilirubin, protein serum, and liver glycogen levels were restored in the PCA+NIL group. NIL in the PCA animals also decreased the gene expression levels of IL-1 and COLL-I, while increasing those of IL-10, TGF-ß, and MMP-13. Histopathology of this group also showed significantly decreased signs of liver damage with lower extent of collagen deposition and fibrosis. Low AVP serum levels were not enough to fully activate the AVP receptors resulting in the decreased activation of cell signaling pathways associated with proinflammatory-profibrotic responses, while activating cell molecular signaling pathways associated with an anti-inflammatory-fibrotic state. Thus, partial reversion of liver damage and fibrosis was observed. The study supports the crucial role of AVP in the inflammatory-fibrotic processes and maintenance of immune competence. The success of the AVP deficiency strategy suggests that blocking AVP receptors may be therapeutically useful to treat inflammatory-fibrotic liver diseases.


Subject(s)
Arginine Vasopressin/deficiency , Liver Cirrhosis/pathology , Liver Failure/immunology , Pituitary Gland/metabolism , Receptors, Vasopressin/metabolism , Animals , Arginine Vasopressin/blood , Disease Models, Animal , Humans , Hypophysectomy , Liver Cirrhosis/blood , Liver Cirrhosis/immunology , Liver Failure/blood , Liver Failure/pathology , Male , Pituitary Gland/surgery , Portacaval Shunt, Surgical , Rats , Rats, Wistar , Signal Transduction/immunology
18.
Pathogens ; 10(7)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34358055

ABSTRACT

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.

19.
J Immunol Res ; 2021: 6697900, 2021.
Article in English | MEDLINE | ID: mdl-33824880

ABSTRACT

Entamoeba histolytica is an intestinal parasite that causes dysentery and amebic liver abscess. E. histolytica has the capability to invade host tissue by union of virulence factor Gal/GalNAc lectin; this molecule induces an adherence-inhibitory antibody response as well as to protect against amebic liver abscess (ALA). The present work showed the effect of the immunization with PEΔIII-LC3-KDEL3 recombinant protein. In vitro, this candidate vaccine inhibited adherence of E. histolytica trophozoites to HepG2 cell monolayer, avoiding the cytolysis, and in a hamster model, we observed a vaccine-induced protection against the damage to tissue liver and the inhibition of uncontrolled inflammation. PEΔIII-LC3-KDEL3 reduced the expression of TNF-α, IL-1ß, and NF-κB in all immunized groups at 4- and 7-day postinfection. The levels of IL-10, FOXP3, and IFN-γ were elevated at 7 days. The immunohistochemistry assay confirmed this result, revealing an elevated quantity of +IFN-γ cells in the liver tissue. ALA formation in hamsters immunized was minimal, and few trophozoites were identified. Hence, immunization with PEΔIII-LC3-KDEL3 herein prevented invasive amebiasis, avoided an acute proinflammatory response, and activated a protective response within a short time. Finally, this recombinant protein induced an increase of serum IgG.


Subject(s)
Entamoeba histolytica/immunology , Liver Abscess, Amebic/prevention & control , Protozoan Proteins/administration & dosage , Protozoan Vaccines/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Animals , Antibodies, Protozoan/blood , Disease Models, Animal , Entamoeba histolytica/genetics , Humans , Immunogenicity, Vaccine , Lectins/genetics , Lectins/immunology , Liver/immunology , Liver/parasitology , Liver/pathology , Liver Abscess, Amebic/blood , Liver Abscess, Amebic/parasitology , Liver Abscess, Amebic/pathology , Male , Mesocricetus , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
20.
Exp Ther Med ; 21(4): 339, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33732312

ABSTRACT

Hepatic cirrhosis is a chronic disease that affects one fifth of the World's population and is the third leading cause of death in Mexico. Attempts have been made to develop treatments for this hepatic cirrhosis, which include manipulating the intestinal microbiota and thus decreasing the early inflammatory response. The microbiota is reportedly altered in patients with cirrhosis. Due to its immunomodulatory properties and its ability to survive in the gastrointestinal tract, Lactococcus lactis (L. lactis) has been used as a therapeutic measure in inflammatory disorders of the colon. The objective of the present study was to evaluate the efficacy of the L. lactis probiotic NZ9000 in preventing tetrachloromethane (CCl4)-induced experimental hepatic fibrosis. The following 4 groups were included in the experimental stage (n=5): i) Control group; ii) L. lactis group; iii) CCl4 group; and iv) L. lactis-CCl4 group. For the first 2 weeks, L. lactis was orally administered to the L. lactis and L. lactis-CCl4 groups; CCl4 was then peritoneally administered to the lactis-CCl4 group for a further 4 weeks (in addition to the probiotic), while the L. lactis group received the probiotic only. For the CCl4 group, CCl4 was administered for 4 weeks. The experimental groups were all compared with the control group and the L. lactis + CCl4 group. Tissue samples were analyzed histologically and biochemically, and the gene expression levels of interleukin (IL)-1, IL-10 and forkhead box protein P3 (FoxP3) were determined. L. lactis decreased hepatic cirrhosis by preventing steatosis and fibrosis, and by reducing the levels of AST and ALT. Subchronic CCl4 injury induced upregulation of the IL-1ß gene in the liver, which was decreased by L. lactis. It was also found that the group treated with L. lactis showed increased expression of Foxp3 in the liver and IL-10 in the gut. These results suggested that oral administration of L. lactis may be a potential probiotic to prevent or protect against CCl4-induced liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...