Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 346(5): 1287-97, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15713481

ABSTRACT

BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antivenins/metabolism , Immunoglobulin Fragments/immunology , Mutation/genetics , Scorpion Venoms/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibody Affinity , Antivenins/genetics , Antivenins/immunology , Biological Evolution , Cloning, Molecular , Epitope Mapping , Escherichia coli/metabolism , Molecular Sequence Data , Neutralization Tests , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Library , Peptides/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...