Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-497875

ABSTRACT

As the SARS-CoV-2 pandemic remains uncontrolled owing to the continuous emergence of variants of concern, there is an immediate need to implement the most effective antiviral treatment strategies, especially for risk groups. Here, we evaluated the therapeutic potency of nirmatrelvir, remdesivir, and molnupiravir and their combinations in SARS-CoV-2-infected K18-hACE2 transgenic mice. Systemic treatment of mice with each drug (20 mg/kg) resulted in slightly enhanced antiviral efficacy and yielded an increased life expectancy of only about 20-40% survival. However, combination therapy with nirmatrelvir (20 mg/kg) and molnupiravir (20 mg/kg) in lethally infected mice showed profound inhibition of SARS-CoV-2 replication in both the lung and brain and synergistically improved survival times up to 80% compared to those with nirmatrelvir (P= 0.0001) and molnupiravir (P= 0.0001) administered alone. This combination therapy effectively reduced clinical severity score, virus-induced tissue damage, and viral distribution compared to those in animals treated with these monotherapies. Furthermore, all these assessments associated with this combination were also significantly higher than that of mice receiving remdesivir monotherapy (P= 0.0001) and the nirmatrelvir (20 mg/kg) and remdesivir (20 mg/kg) combination (P= 0.0001), underscored the clinical significance of this combination. By contrast, the nirmatrelvir and remdesivir combination showed less antiviral efficacy, with lower survival compared to nirmatrelvir monotherapy, demonstrating the inefficient therapeutic effect of this combination. The combination therapy with nirmatrelvir and molnupiravir contributes to alleviated morbidity and mortality, which can serve as a basis for the design of clinical studies of this combination in the treatment of COVID-19 patients. IMPORTANCESince SARS-CoV-2 spread rapidly with the emergence of new variants of concerns, it is necessary to develop effective treatment strategies to treat elderly individuals and those with comorbidities. Antiviral therapy using a combination of drugs is more effective in eradicating viruses and will undoubtedly improve the clinical outcome and survival probability of hospitalized SARS-CoV-2 patients. In the current study, we observed three FDA-approved antivirals nirmatrelvir, remdesivir, and molnupiravir have therapeutic significance with moderate survival for their monotherapies against SARS-CoV-2 infected K18-hACE2 mouse model. The combination of nirmatrelvir and molnupiravir showed significant antiviral activity and a higher survival rate of approximately 80%, providing in vivo evidence of the potential utility of this combination. In contrast, nirmatrelvir and remdesivir combination showed less antiviral potency and emphasized the ineffective significance with less survival. The current study suggests that the nirmatrelvir and molnupiravir combination is an effective drug regimen strategy in treating SARS-CoV-2 patients.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-480994

ABSTRACT

Recurrent spillovers of - and {beta}-coronaviruses (CoV) such as acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, SARS-CoV-2, and possibly human CoV (NL63, 229E, OC43, and HKU1) have caused serious morbidity and mortality worldwide. Six receptor binding domains (RBDs) derived from - and {beta}-CoV that are considered to have originated from animals and cross-infected humans were linked to proliferating cell nuclear antigen (PCNA) heterotrimeric subunits, PCNA1, PCNA2, and PCNA3. These were used to form a scaffold-based mosaic multivalent antigen, 6RBD-np. Electron microscopic and atomic force microscopic images show a ring-shaped disk with six protruding RBDs, like jewels in a crown, with a size of 40 nm. Prime-boost immunizations with 6RBD-np in BALB/c mice elicited strong, dose-dependent antibody responses. In human angiotensin converting enzyme 2-transgenic mice, the same immunization induced full-protection against SARS-CoV-2 wild type and Delta challenges, resulting in a 100% survival rate. The mosaic 6RBD-np provides a potential platform for developing a pan-CoV vaccine against newly emerging SARS-CoV-2 variants and future CoV spillovers. SignificanceDespite the arsenal of COVID-19 vaccines, hospitalization and mortality associated with SARS-CoV-2 (acute respiratory syndrome coronavirus 2) variants remain high. There is an urgent need to develop next-generation COVID vaccines that provide broad protection against diseases by current and newly emerging SARS-CoV-2 variants. In this study, six receptor binding domains (RBDs) derived from - and {beta}-CoV were linked to proliferating cell nuclear antigen (PCNA) heterotrimeric scaffolds. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens. The prime-boost immunization in BALB/c and human angiotensin converting enzyme 2-transgenic mice with the 6RBD-np elicited strong, dose-dependent antibody responses and induced full-protection against both the SARS-CoV-2 wild type (WT) and Delta challenges. This study provides proof-of-concept that the mosaic 6RBD-np induces 100% protection against SARS-CoV-2 WT and Delta. It provides the potential of co-displaying heterologous antigens for novel vaccine designs, which can be deployed countering future pandemics.

3.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-8880

ABSTRACT

PURPOSE: Emergency physicians (EP) are vulnerable to radiation exposure while on duty in the emergency department (ED). Although many studies have been reported abroad, there have been few studies of radiation exposure to EP in Korea. This study was performed to determine the present radiation exposure conditions of EP in Korea. METHODS: A prospective study was conducted from April 1, 2007 to June 30, 2007 at ED in three teaching hospitals. Eighteen interns and 19 residents were selected. Each wore thermoluminescent personal radiation dosimetry monitors at near the thyroid while working in the ED. We estimated the radiation exposure dose of these EP for three months and compared the results with those obtained for radiologists. RESULTS: The average radiation exposure dose of EP over three months was 0.257+/-0.391 mSv, and that of radiologists was 0.184+/-0.273 mSv. These results were below the recommended occupational dose limit of 5 mSv per 3 months. The radiation exposure dose of EP was higher than that of radiologists, but the difference was not statistically significant (0.280+/-0.303 vs 0.075+/-0.981 mSv, p=0.042). CONCLUSION: We recommend that the use of dosimetry by EP needs to be reviewed. EP should be aware of radiation exposure risks and minimize radiation exposure.


Subject(s)
Humans , Emergencies , Hospitals, Teaching , Korea , Occupational Exposure , Prospective Studies , Radiometry , Thyroid Gland
SELECTION OF CITATIONS
SEARCH DETAIL
...