Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894147

ABSTRACT

In recent years, communication systems, including RFID, have been used in intelligent beehives for beekeeping. RFID systems in the UHF frequency band offer reading distances of tens of centimetres, allowing the localisation and identification of the queen bee inside the hive. With this purpose, this work proposes an analysis of an environment of propagation that consists of a honeycomb frame, where the reader is placed within the frame, and the tag is placed in different positions over it. A honeycomb frame consists of a wooden box containing a honey wax panel, supported by metallic wires. The environment is modelled theoretically using its S-parameters and simulated in CST Studio. An analysis of these results and empirical measurements is performed. The results show that a periodicity in the received power of the tag is found with respect to the distance to the reader when the tag is located in a direction parallel to the wire, where local maximum and minimum values are found. Additionally, when the tag is placed over a wire of the frame, a higher received power is obtained compared to the case where the tag is placed between two wires. Furthermore, it has been observed that the reading range has increased with respect to free space, covering the full frame.

2.
J Acoust Soc Am ; 153(4): 1974, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37092919

ABSTRACT

We present a new method for the calculation of the multiple acoustic diffraction caused by the presence of a wide barrier. Our solution decomposes the initial scenario into an equivalent sum of geometries that only consider knife-edges. Then, by applying Babinet's principle, the total acoustic field that reaches the receiving point, which can be located at an arbitrary position, can be calculated via the uniform theory of diffraction. This method is mathematically less complex and computationally more efficient than most existing techniques. The results are validated (with and without ground reflection) by the solid agreement obtained with other solutions that solve the problem by considering the wide barrier as such, with our proposed method yielding a lower computational time (except against semi-empirical formulations) and better accuracy when compared with measurements. The presented solution can be applied in urban environments where the impact of traffic noise on residential buildings located along roads or highways needs to be evaluated, as well as in scenarios in which the insertion loss caused by a rectangular obstacle, such as a noise barrier, is to be calculated.

3.
Sensors (Basel) ; 23(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36991991

ABSTRACT

In this work, we present power and quality measurements of four transmissions using different emission technologies in an indoor environment, specifically a corridor, at the frequency of 868 MHz under two non-line-of-sight (NLOS) conditions. A narrowband (NB) continuous wave (CW) signal has been transmitted, and its received power has been measured with a spectrum analyzer, LoRa and Zigbee signals have also been transmitted, and their Received Signal Strength Indicator (RSSI) and bit error rate (BER) have been measured using the transceivers themselves; finally, a 20 MHz bandwidth 5G QPSK signal has also been transmitted and their quality parameters, such as SS-RSRP, SS-RSRQ and SS-RINR, have been measured using a SA. Thereafter, two fitting models, the Close-in (CI) model and the Floating-Intercept (FI) model, were used to analyze the path loss. The results show that slopes below 2 for the NLOS-1 zone and above 3 for the NLOS-2 zone have been found. Moreover, the CI and FI model behave very similarly in the NLOS-1 zone, while in the NLOS-2 zone, the CI model has poor accuracy in contrast to the FI model, which achieves the best accuracy in both NLOS situations. From these models, the power predicted with the FI model has been correlated with the measured BER value, and power margins have been established for which LoRa and Zigbee would each reach a BER greater than 5%; likewise, -18 dB has been established for the SS-RSRQ of 5G transmission.

4.
J Acoust Soc Am ; 142(2): 902, 2017 08.
Article in English | MEDLINE | ID: mdl-28863562

ABSTRACT

A formulation based on the uniform theory of diffraction (UTD) for the analysis of the multiple-diffraction of a spherical sound wave caused by a series of wedges or knife-edges is hereby presented. The receiver location has to be considered at the same height as the preceding obstacles and at the same inter-obstacle distance from the last wedge. The solution, which is based on a UTD-physical optics formulation for radio-wave multiple-diffraction and has been validated through comparison with a geometrical theory of diffraction acoustic model, is computationally more efficient than other existing methods thanks to the fact that only single diffractions are involved in the calculations (high-order diffraction terms are not considered in the diffraction coefficients), thus allowing for the consideration of a great number of obstacles. In such a way, the proposed solution overcomes the limitations of previous works when multiple acoustic diffraction caused by an array of elements of equal height is to be analyzed. Therefore, the results can be applied in the study of sound propagation in scenarios where multiple-diffraction over a series of edges of equal height and periodical spacing has to be considered, such as the typical audience seating of a concert hall.

SELECTION OF CITATIONS
SEARCH DETAIL
...