Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 14(9): 3234-47, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22294155

ABSTRACT

The dissociation of H(2) on Ti-covered Al surfaces is relevant to the rehydrogenation and dehydrogenation of the NaAlH(4) hydrogen storage material. The energetically most stable structure for a 1/2 monolayer of Ti deposited on the Al(100) surface has the Ti atoms in the second layer with a c(2 × 2) structure, as has been confirmed by both low-energy electron diffraction and low-energy ion scattering experiments and density functional theory studies. In this work, we investigate the dynamics of H(2) dissociation on a slab model of this Ti/Al(100) surface. Two six-dimensional potential energy surfaces (PESs) have been built for this H(2) + Ti/Al(100) system, based on the density functional theory PW91 and RPBE exchange-correlation functionals. In the PW91 (RPBE) PES, the lowest H(2) dissociation barrier is found to be 0.65 (0.84) eV, with the minimum energy path occurring for H(2) dissociating above the bridge to top sites. Using both PESs, H(2) dissociation probabilities are calculated using the classical trajectory (CT), the quasi-classical trajectory (QCT), and the time-dependent wave-packet methods. We find that the QCT H(2) dissociation probabilities are in good agreement with the quantum dynamics results in the collision energy range studied up to 1.0 eV. We have also performed molecular beam simulations and present predictions for molecular beam experiments. Our molecular beam simulations show that H(2) dissociation on the 1/2 ML Ti/Al(100) surface is an activated process, and the reaction probability is found to be 6.9% for the PW91 functional and 1.8% for the RPBE at a nozzle temperature of 1700 K. Finally, we have also calculated H(2) dissociation rate constants by applying transition state theory and the QCT method, which could be relevant to modeling Ti-catalyzed rehydrogenation and dehydrogenation of NaAlH(4).

2.
Phys Chem Chem Phys ; 13(38): 16955-72, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21887432

ABSTRACT

The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.

3.
Phys Chem Chem Phys ; 13(42): 19067-76, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21674116

ABSTRACT

We report a quantum dynamics study of O + OH (v = 1, j = 0) collisions on its ground electronic state, employing two different potential energy surfaces: the DIMKP surface by Kendrick and Pack, and the XXZLG surface by Xu et al. A time-independent quantum mechanical method based on hyperspherical coordinates has been adopted for the dynamics calculations. Energy-dependent probabilities and rate coefficients are computed for the elastic, inelastic, and reactive channels over the collision energy range E(coll) = 10(-10)-0.35 eV, for J = 0 total angular momentum. Initial state-selected reaction rate coefficients are also calculated from the J = 0 reaction probabilities by applying a J-shifting approximation, for temperatures in the range T = 10(-6)-700 K. Our results show that the dynamics of the collisional process and its outcome are strongly influenced by long-range forces, and chemical reactivity is found to be sensitive to the choice of the potential energy surface. For O + OH (v = 1, j = 0) collisions at low temperatures, vibrational relaxation of OH competes with reactive scattering. Since long-range interactions can facilitate vibrational relaxation processes, we find that the DIMKP potential (which explicitly includes van der Waals dispersion terms) favours vibrational relaxation over chemical reaction at low temperatures. On the DIMKP potential in the ultracold regime, the reaction rate coefficient for O + OH (v = 1, j = 0) is found to be a factor of thirteen lower than that for O + OH (v = 0, j = 0). This significantly high reactivity of OH (v = 0, j = 0), compared to that of OH (v = 1, j = 0), is attributed to enhancement caused by the presence of a HO(2) quasibound state (scattering resonance) with energy near the O + OH (v = 0, j = 0) dissociation threshold. In contrast, the XXZLG potential does not contain explicit van der Waals terms, being just an extrapolation by a nearly constant function at large O-OH distances. Therefore, long-range potential couplings are absent in calculations using the XXZLG surface, which does not induce vibrational relaxation as efficiently as the DIMKP potential. The XXZLG potential leads to a slightly higher reactivity (a factor of 1.4 higher) for O + OH (v = 1, j = 0) compared to that for O + OH (v = 0, j = 0) at ultracold temperatures. Overall, both potential surfaces yield comparable values of reaction rate coefficients at low temperatures for the O + OH (v = 1, j = 0) reaction.

4.
J Chem Phys ; 134(11): 114708, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21428657

ABSTRACT

Based on a slab model of H(2) dissociation on a c(2 × 2) structure with Ti atoms in the first and third layers of Al(100), a six-dimensional (6D) potential energy surface (PES) has been built. In this PES, a molecular adsorption well with a depth of 0.45 eV is present in front of a barrier of height 0.13 eV. Using this PES, H(2) dissociation probabilities are calculated by the classical trajectory (CT), the quasiclassical trajectory (QCT), and the time-dependent wave-packet (TDWP) method. The QCT study shows that trajectories can be trapped by the molecular adsorption well. Higher incident energy can lead to direct H(2) dissociation. Vibrational pre-excitation is the most efficient way to promote direct dissociation without trapping. We find that both rotational and vibrational excitation have efficacies close to 1.0 in the entire range of incident energies investigated, which supports the randomization in the initial conditions making the reaction rate solely dependent on the total (internal and translational) energy. The H(2) dissociation probabilities from quantum dynamics are in reasonable agreement with the QCT results in the energy range 50-200 meV, except for some fluctuations. However, the TDWP results considerably exceed the QCT results in the energy range 200-850 meV. The CT reaction probabilities are too low compared with the quantum dynamical results.

5.
Phys Chem Chem Phys ; 12(6): 1331-40, 2010 Feb 14.
Article in English | MEDLINE | ID: mdl-20119611

ABSTRACT

We have studied hydrogen dissociation on a CO-precovered Ru(0001) surface, by means of six-dimensional (6D) quasi-classical and quantum dynamics. The 6D potential energy surface has been built by applying a modified Shepard interpolation method to a set of density functional theory (DFT) data, for a coverage of 1/3 monolayer CO. We compared our theoretical results to the experimental ones obtained by Ueta et al. [ChemPhysChem, 2008, 9, 2372]. In order to do so, we have simulated the supersonic molecular beam used in the experiments by taking into account the energy distribution and rovibrational states population in the molecular beam. We find that both the energy and rovibrational states distributions of the molecular beam influence the reactivity, with the largest effect being caused by the energy distribution. However, a significant discrepancy between theory and experiment persists. We argue that this discrepancy could be due to the RPBE functional used in the DFT calculations and/or the neglect of CO-motion in the calculations.

6.
J Chem Phys ; 128(21): 211101, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18537408

ABSTRACT

We report a quantum dynamics study of H + H(2)(+) (v(0) = 0, j(0) = 0) scattering on its lowest triplet state, for J = 0 total angular momentum and total energies up to 1.85 eV. This provides a benchmark example of indirect resonance-mediated reaction in presence of a conical intersection (CI). Visualization of time-dependent wave packets shows significant "looping" around the CI, which is facilitated by long-lived H(3)(+) scattering resonances, predominant at low energies. State-to-state inelastic transition probabilities exhibit a highly oscillatory structure and pronounced geometric phase effects, which, in contrast to direct reactions, are more strongly marked at lower energies.

7.
J Chem Phys ; 126(4): 044317, 2007 Jan 28.
Article in English | MEDLINE | ID: mdl-17286480

ABSTRACT

A recent puzzle in nonadiabatic quantum dynamics is that geometric phase (GP) effects are present in the state-to-state opacity functions of the hydrogen-exchange reaction, but cancel out in the state-to-state integral cross sections (ICSs). Here the authors explain this result by using topology to separate the scattering amplitudes into contributions from Feynman paths that loop in opposite senses around the conical intersection. The clockwise-looping paths pass over one transition state (1-TS) and scatter into positive deflection angles; the counterclockwise-looping paths pass over two transition states (2-TS) and scatter into negative deflection angles. The interference between the 1-TS and 2-TS paths thus integrates to a very small value, which cancels the GP effects in the ICS. Quasiclassical trajectory (QCT) calculations reproduce the scattering of the 1-TS and 2-TS paths into positive and negative deflection angles and show that the 2-TS paths describe a direct insertion mechanism. The inserting atom follows a highly constrained "S-bend" path, which allows it to avoid both the other atoms and the conical intersection and forces the product diatom to scatter into high rotational states. By contrast, the quantum 2-TS paths scatter into a mainly statistical distribution of rotational states, so that the quantum 2-TS total ICS is roughly twice the QCT ICS at 2.3 eV total energy. This suggests that the S-bend constraint is relaxed by tunneling in the quantum system. These findings on H+H(2) suggest that similar cancellations or reductions in GP effects are likely in many other reactions.

8.
Science ; 309(5738): 1227-30, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-16109876

ABSTRACT

The crossing of two electronic potential surfaces (a conical intersection) should result in geometric phase effects even for molecular processes confined to the lower surface. However, recent quantum simulations of the hydrogen exchange reaction (H + H2 --> H2 + H) have predicted a cancellation in such effects when product distributions are integrated over all scattering angles. We used a simple topological argument to extract reaction paths with different senses from a nuclear wave function that encircles a conical intersection. In the hydrogen-exchange reaction, these senses correspond to paths that cross one or two transition states. These two sets of paths scatter their products into different regions of space, which causes the cancellation in geometric phase effects. The analysis should generalize to other direct reactions.

9.
J Chem Phys ; 123(5): 054306, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16108638

ABSTRACT

Product rotational distributions for the reaction H + D2 --> HD(nu'=1,j') + D have been measured for 16 collision energies in the range of 1.43 < or = E(coll) < or = 2.55 eV. Time-dependent quantum-mechanical calculations agree well in general with the experimental results, but they consistently yield slightly colder distributions. In terms of the average energy channeled into rotation, the differences between experiment and theory amount to approximately 10% for all collision energies sampled. No peculiarity is found for E(coll)=2.55 eV at which the system has sufficient energy to access the first HD2 electronically excited state.

10.
J Chem Phys ; 122(20): 204324, 2005 May 22.
Article in English | MEDLINE | ID: mdl-15945741

ABSTRACT

We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0

11.
J Chem Phys ; 121(14): 6587-90, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15473712

ABSTRACT

Experimental measurements of rovibrational product state distributions for the inelastic scattering process H + D2(nu=0,j)-->H + D2(nu' = 1,2,j') are presented and compared with the results of quasiclassical and quantum mechanical calculations. Agreement between theory and experiment is almost quantitative. Two subtle trends are found: the relative amount of energy in product rotational excitation decreases slightly with increasing collision energy and increases slightly with increasing product vibrational excitation. These trends are the reverse of what has been found for reactive scattering in which the opposite trends are much more pronounced.

SELECTION OF CITATIONS
SEARCH DETAIL
...