Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Theor Appl Genet ; 130(4): 669-684, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28050618

ABSTRACT

KEY MESSAGE: Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered. Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization. However, the genetic factors involved in clubroot resistance have not been characterized under nitrogen-limiting conditions. This study aimed to assess the variability of clubroot resistance under different nitrogen levels and to characterize the impact of nitrogen supply on genetic resistance factors. Linkage analyses and a genome-wide association study were conducted to detect QTL for clubroot resistance and evaluate their sensitivity to nitrogen. The clubroot response of a set of 92 diverse oilseed rape accessions and 108 lines derived from a cross between 'Darmor-bzh' (resistant) and 'Yudal' (susceptible) was studied in the greenhouse under high- and low-nitrogen conditions, following inoculation with the P. brassicae isolates eH and K92-16. Resistance to each isolate was controlled by a major QTL and a few small-effects QTL. While the same QTL were detected under both high and low nitrogen, their effects were altered. Clubroot resistance to isolate eH, but not K92-16, was greater under a low-N supply versus a high-N supply. New sources of resistance were found among the oilseed rape accessions under both low and high-N conditions. The results are discussed relative to the literature and from a crop improvement perspective.


Subject(s)
Brassica napus/genetics , Disease Resistance/genetics , Nitrogen/metabolism , Plant Diseases/genetics , Plasmodiophorida , Quantitative Trait Loci , Brassica napus/microbiology , Genetic Association Studies , Genetic Linkage , Genotype , Linear Models , Plant Diseases/microbiology
2.
J Chem Phys ; 145(15): 154702, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27782451

ABSTRACT

Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...