Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Pathol ; 254(4): 418-429, 2021 07.
Article in English | MEDLINE | ID: mdl-33748968

ABSTRACT

Human genetics plays an increasingly important role in drug development and population health. Here we review the history of human genetics in the context of accelerating the discovery of therapies, present examples of how human genetics evidence supports successful drug targets, and discuss how polygenic risk scores could be beneficial in various clinical settings. We highlight the value of direct-to-consumer platforms in the era of fast-paced big data biotechnology, and how diverse genetic and health data can benefit society. © 2021 23andMe, Inc. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Drug Discovery , Genome, Human , Humans
3.
Breast Cancer Res ; 17: 59, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25902869

ABSTRACT

INTRODUCTION: Breast cancer, the most common cause of cancer-related deaths worldwide among women, is a molecularly and clinically heterogeneous disease. Extensive genetic and epigenetic profiling of breast tumors has recently revealed novel putative driver genes, including p21-activated kinase (PAK)1. PAK1 is a serine/threonine kinase downstream of small GTP-binding proteins, Rac1 and Cdc42, and is an integral component of growth factor signaling networks and cellular functions fundamental to tumorigenesis. METHODS: PAK1 dysregulation (copy number gain, mRNA and protein expression) was evaluated in two cohorts of breast cancer tissues (n=980 and 1,108). A novel small molecule inhibitor, FRAX1036, and RNA interference were used to examine PAK1 loss of function and combination with docetaxel in vitro. Mechanism of action for the therapeutic combination, both cellular and molecular, was assessed via time-lapse microscopy and immunoblotting. RESULTS: We demonstrate that focal genomic amplification and overexpression of PAK1 are associated with poor clinical outcome in the luminal subtype of breast cancer (P=1.29×10(-4) and P=0.015, respectively). Given the role for PAK1 in regulating cytoskeletal organization, we hypothesized that combination of PAK1 inhibition with taxane treatment could be combined to further interfere with microtubule dynamics and cell survival. Consistent with this, administration of docetaxel with either a novel small molecule inhibitor of group I PAKs, FRAX1036, or PAK1 small interfering RNA oligonucleotides dramatically altered signaling to cytoskeletal-associated proteins, such as stathmin, and induced microtubule disorganization and cellular apoptosis. Live-cell imaging revealed that the duration of mitotic arrest mediated by docetaxel was significantly reduced in the presence of FRAX1036, and this was associated with increased kinetics of apoptosis. CONCLUSIONS: Taken together, these findings further support PAK1 as a potential target in breast cancer and suggest combination with taxanes as a viable strategy to increase anti-tumor efficacy.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/metabolism , Microtubules/metabolism , Protein Kinase Inhibitors/pharmacology , Tubulin Modulators/pharmacology , p21-Activated Kinases/antagonists & inhibitors , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , DNA Copy Number Variations , Docetaxel , Drug Synergism , Female , Gene Amplification , Gene Expression , Humans , Prognosis , Signal Transduction/drug effects , Taxoids/pharmacology , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
4.
Sci Transl Med ; 7(273): 273ra15, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653221

ABSTRACT

Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species. LRRK2 mRNA tissue expression was comparable between species. Phenotypic analysis of Lrrk2 knockout mice revealed morphologic changes in lungs and kidneys, similar to those reported previously. However, in preclinical toxicity assessments in rodents, no pulmonary or renal changes were induced by two distinct LRRK2 kinase inhibitors. Both of these kinase inhibitors induced abnormal cytoplasmic accumulation of secretory lysosome-related organelles known as lamellar bodies in type II pneumocytes of the lung in nonhuman primates, but no lysosomal abnormality was observed in the kidney. The pulmonary change resembled the phenotype of Lrrk2 knockout mice, suggesting that this was LRRK2-mediated rather than a nonspecific or off-target effect. A biomarker of lysosomal dysregulation, di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP), was also decreased in the urine of Lrrk2 knockout mice and nonhuman primates treated with LRRK2 kinase inhibitors. Our results suggest a role for LRRK2 in regulating lysosome-related lamellar bodies and that pulmonary toxicity may be a critical safety liability for LRRK2 kinase inhibitors in patients.


Subject(s)
Lung/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Animals , Biomarkers/blood , Biomarkers/urine , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Kidney/abnormalities , Kidney/drug effects , Kidney/pathology , Kidney/ultrastructure , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lung/abnormalities , Lung/pathology , Lung/ultrastructure , Macaca fascicularis , Male , Mice, Inbred C57BL , Mice, Knockout , Morpholines/chemistry , Morpholines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
5.
J Pathol ; 234(4): 502-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25074413

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is a major unmet medical need and a deeper understanding of molecular drivers is needed to advance therapeutic options for patients. We report here that p21-activated kinase 1 (PAK1) is a central node in PDAC cells downstream of multiple growth factor signalling pathways, including hepatocyte growth factor (HGF) and MET receptor tyrosine kinase. PAK1 inhibition blocks signalling to cytoskeletal effectors and tumour cell motility driven by HGF/MET. MET antagonists, such as onartuzumab and crizotinib, are currently in clinical development. Given that even highly effective therapies have resistance mechanisms, we show that combination with PAK1 inhibition overcomes potential resistance mechanisms mediated either by activation of parallel growth factor pathways or by direct amplification of PAK1. Inhibition of PAK1 attenuated in vivo tumour growth and metastasis in a model of pancreatic adenocarcinoma. In human tissues, PAK1 is highly expressed in a proportion of PDACs (33% IHC score 2 or 3; n = 304) and its expression is significantly associated with MET positivity (p < 0.0001) and linked to a widespread metastatic pattern in patients (p = 0.067). Taken together, our results provide evidence for a functional role of MET/PAK1 signalling in pancreatic adenocarcinoma and support further characterization of therapeutic inhibitors in this indication.


Subject(s)
Adenocarcinoma/metabolism , Cell Movement , Drug Resistance, Neoplasm/physiology , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , p21-Activated Kinases/metabolism , Adenocarcinoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Azetidines/pharmacology , Cell Movement/drug effects , Disease Models, Animal , Humans , Immunohistochemistry , Mice , Pancreatic Neoplasms/pathology , Piperidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
6.
J Neurosci ; 34(19): 6425-37, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24806669

ABSTRACT

Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aß peptides derived from APP. Given the link between APP, Aß, and Alzheimer's disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/physiology , Central Nervous System/cytology , Receptors, Tumor Necrosis Factor/physiology , Signal Transduction/physiology , Synapses/physiology , Alzheimer Disease/pathology , Animals , Avoidance Learning/physiology , Central Nervous System/growth & development , Conditioning, Operant/physiology , Dendritic Spines/physiology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fear/psychology , Gliosis/pathology , Humans , In Situ Hybridization , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Motor Activity/physiology , Neural Pathways/physiology , Plaque, Amyloid/pathology
7.
Nat Commun ; 5: 3530, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24667486

ABSTRACT

Deciphering metastatic routes is critically important as metastasis is a primary cause of cancer mortality. In colorectal cancer (CRC), it is unknown whether liver metastases derive from cancer cells that first colonize intestinal lymph nodes, or whether such metastases can form without prior lymph node involvement. A lack of relevant metastatic CRC models has precluded investigations into metastatic routes. Here we describe a metastatic CRC mouse model and show that liver metastases can manifest without a lymph node metastatic intermediary. Colorectal tumours transplanted onto the colonic mucosa invade and metastasize to specific target organs including the intestinal lymph nodes, liver and lungs. Importantly, this metastatic pattern differs from that observed following caecum implantation, which invariably involves peritoneal carcinomatosis. Anti-angiogenesis inhibits liver metastasis, yet anti-lymphangiogenesis does not impact liver metastasis despite abrogating lymph node metastasis. Our data demonstrate direct hematogenous spread as a dissemination route that contributes to CRC liver malignancy.


Subject(s)
Carcinoma/secondary , Cecum , Colon , Colorectal Neoplasms/pathology , Liver Neoplasms/secondary , Lymph Nodes/pathology , Peritoneal Neoplasms/secondary , Angiogenesis Inhibitors/pharmacology , Animals , Disease Models, Animal , HCT116 Cells , Humans , Lymph Nodes/drug effects , Lymphangiogenesis/drug effects , Lymphatic Metastasis , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Vascular Endothelial Growth Factor C/antagonists & inhibitors
8.
Inflamm Bowel Dis ; 20(3): 514-24, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24492313

ABSTRACT

BACKGROUND: NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA). METHODS: We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells. RESULTS: DUOX2 with maturation partner DUOXA2 forms the predominant system for H2O2 production in human colon and is upregulated in active colitis. DUOX2 in situ is exclusively epithelial, varies between and within individual crypts, and increases near inflammation. 8-OHdG and γH2AX were observed in damaged crypt epithelium. 5-ASA upregulated DUOX2 and DUOXA2 levels in the setting of active versus quiescent disease and altered DUOX2 expression in cultured biopsies. Ingenuity pathway analysis confirmed that inflammation status and 5-ASA increase expression of DUOX2 and DUOXA2. An epithelial cell model confirmed that cultured cancer cells expressed DUOX protein and produced H2O2 in response to hypoxia and 5-ASA exposure. CONCLUSIONS: Both DUOX2 and DUOXA2 expression are involved specifically in inflammation and are regulated on a crypt-by-crypt basis in ulcerative colitis tissues. Synergy between inflammation, hypoxia, and 5-ASA to increase H2O2 production could explain how 5-ASA supports innate defense, although potentially increasing the burden of DNA damage.


Subject(s)
Colitis, Ulcerative/pathology , Colonic Neoplasms/pathology , Hydrogen Peroxide/metabolism , Membrane Proteins/metabolism , Mesalamine/pharmacology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Adenoma/drug therapy , Adenoma/metabolism , Adenoma/pathology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Blotting, Western , Cells, Cultured , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Dual Oxidases , Fluorescent Antibody Technique , Humans , Hypoxia/metabolism , Hypoxia/pathology , In Situ Hybridization , Inflammation/metabolism , Inflammation/pathology , Membrane Proteins/genetics , NADPH Oxidases/genetics , Oxidants/metabolism , Oxidation-Reduction , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
9.
J Pathol ; 232(2): 99-102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24122335

ABSTRACT

The rapid pace of drug discovery and drug development in oncology, immunology and ophthalmology brings new challenges; the efficient and effective development of new targeted drugs will require more detailed molecular classifications of histologically homogeneous diseases that show heterogeneous clinical outcomes. To this end, single companion diagnostics for specific drugs will be replaced by multiplex diagnostics for entire therapeutic areas, preserving tissue and enabling rapid molecular taxonomy. The field will move away from the development of new molecular entities as single agents, to which resistance is common. Instead, a detailed understanding of the pathological mechanisms of resistance, in patients and in preclinical models, will be key to the validation of scientifically rational and clinically effective drug combinations. To remain at the heart of disease diagnosis and appropriate management, pathologists must evolve into translational biologists and biomarker scientists. Herein, we provide examples of where this metamorphosis has already taken place, in lung cancer and melanoma, where the transformation has yet to begin, in the use of immunotherapies for ophthalmology and oncology, and where there is fertile soil for a revolution in treatment, in efforts to classify glioblastoma and personalize treatment. The challenges of disease heterogeneity, the regulatory environment and adequate tissue are ever present, but these too are being overcome in dedicated academic centres. In summary, the tools necessary to overcome the 'whens' and 'ifs' of the molecular revolution are in the hands of pathologists today; it is a matter of standardization, training and leadership to bring these into routine practice and translate science into patient benefit. This Annual Review Issue of the Journal of Pathology highlights the central role for pathology in modern drug discovery and development.


Subject(s)
Drug Discovery/methods , Pathology , Animals , Biomarkers/analysis , Biopsy , Drug Discovery/trends , Forecasting , Humans , Molecular Targeted Therapy , Pathology/trends
10.
J Exp Med ; 210(12): 2553-67, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24166713

ABSTRACT

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid-induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


Subject(s)
MAP Kinase Kinase Kinases/physiology , Nerve Degeneration/physiopathology , Animals , Brain/pathology , Brain/physiopathology , Disks Large Homolog 4 Protein , Glutamic Acid/physiology , Guanylate Kinases/physiology , Kainic Acid/toxicity , MAP Kinase Kinase Kinases/deficiency , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Membrane Proteins/physiology , Mice , Mice, Knockout , N-Methylaspartate/physiology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Tissue Proteins/physiology , Synapses/physiology
11.
J Clin Invest ; 123(9): 3997-4009, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23945239

ABSTRACT

Many oncology drugs are administered at their maximally tolerated dose without the knowledge of their optimal efficacious dose range. In this study, we describe a multifaceted approach that integrated preclinical and clinical data to identify the optimal dose for an antiangiogenesis agent, anti-EGFL7. EGFL7 is an extracellular matrix-associated protein expressed in activated endothelium. Recombinant EGFL7 protein supported EC adhesion and protected ECs from stress-induced apoptosis. Anti-EGFL7 antibodies inhibited both of these key processes and augmented anti-VEGF-mediated vascular damage in various murine tumor models. In a genetically engineered mouse model of advanced non-small cell lung cancer, we found that anti-EGFL7 enhanced both the progression-free and overall survival benefits derived from anti-VEGF therapy in a dose-dependent manner. In addition, we identified a circulating progenitor cell type that was regulated by EGFL7 and evaluated the response of these cells to anti-EGFL7 treatment in both tumor-bearing mice and cancer patients from a phase I clinical trial. Importantly, these preclinical efficacy and clinical biomarker results enabled rational selection of the anti-EGFL7 dose currently being tested in phase II clinical trials.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies/pharmacology , Apoptosis , Endothelial Growth Factors/immunology , Human Umbilical Vein Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Bevacizumab , Calcium-Binding Proteins , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Trials, Phase I as Topic , EGF Family of Proteins , Human Umbilical Vein Endothelial Cells/physiology , Humans , Insulinoma/blood supply , Insulinoma/drug therapy , Insulinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Nude , Mice, Transgenic , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Tumor Burden/drug effects , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/physiology , Xenograft Model Antitumor Assays
12.
Histopathology ; 63(3): 351-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23802768

ABSTRACT

AIMS: Preclinical data suggest that signalling through the HGF-MET pathway may confer resistance to BRAF inhibition in BRAF(V600E/K) melanoma. Therefore, blockade of HGF-MET signalling might be a valid therapeutic strategy, in combination with BRAF inhibition, in BRAF(V600E/K) melanoma. The aim of this study was to investigate the clinical relevance of these observations by evaluating the survival impact of MET expression in patients with BRAF(V600E/K) advanced melanoma treated with vemurafenib. METHODS AND RESULTS: Formalin-fixed tissue blocks were obtained of tumours from patients enrolled in the BRIM2 (n = 59) and BRIM3 (n = 150) trials of vemurafenib in advanced BRAF(V600E/K) melanoma. Immunohistochemistry for MET (SP44 rabbit monoclonal antibody) was performed with a highly validated assay and clinically validated scoring system. Pretreatment MET expression was frequent at the ≥1 + cutoff (BRIM3, 31%; BRIM2, 49%), but relatively infrequent at the ≥2 + cutoff (BRIM3, 9%; BRIM2, 19%). Retrospective subset analyses showed that, irrespective of the cutoff used or the treatment arm, MET expression did not show prognostic significance, in terms of objective response rate, progression-free survival, or overall survival. CONCLUSIONS: MET is expressed in a proportion of BRAF(V600E/K) advanced melanomas. Further analyses on appropriately powered subsets are needed to determine the prognostic and predictive significance of MET in vemurafenib-treated melanoma.


Subject(s)
Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-met/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Disease-Free Survival , Female , Humans , Immunohistochemistry , Indoles/therapeutic use , Kaplan-Meier Estimate , Male , Melanoma/therapy , Middle Aged , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/genetics , Mutant Proteins/metabolism , Prognosis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Rabbits , Retrospective Studies , Signal Transduction , Skin Neoplasms/therapy , Sulfonamides/therapeutic use , Vemurafenib , Young Adult
13.
J Natl Cancer Inst ; 105(9): 606-7, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23535073

ABSTRACT

BACKGROUND: Although remarkable clinical response rates in melanoma have been observed using vemurafenib or dabrafenib in patients with tumors carrying oncogenic mutations in BRAF, a substantial unmet medical need remains for the subset of patients with wild-type BRAF tumors. METHODS: To investigate the role of p21-activated kinases (PAKs) in melanoma, we determined PAK1 genomic copy number and protein expression for a panel of human melanoma tissues. PAK1 was inhibited in vitro and in vivo using RNA interference or PF-3758309 inhibitor treatment in a panel of melanoma cell lines with known BRAF and RAS (rat sarcoma) genotype to better understand its role in melanoma cell proliferation and migration. Tumorigenesis was assessed in vivo in female NCR nude mice and analyzed with cubic spline regression and area under the curve analyses. All statistical tests were two-sided. RESULTS: Strong cytoplasmic PAK1 protein expression was prevalent in melanomas (27%) and negatively associated with activating mutation of the BRAF oncogene (P < .001). Focal copy number gain of PAK1 at 11q13 was also observed in 9% of melanomas (n = 87; copy number ≥ 2.5) and was mutually exclusive with BRAF mutation (P < .005). Selective PAK1 inhibition attenuated signaling through mitogen-activated protein kinase (MAPK) as well as cytoskeleton-regulating pathways to modulate the proliferation and migration of BRAF wild-type melanoma cells. Treatment of BRAF wild-type melanomas with PF-3758309 PAK inhibitor decreased tumor growth for SK-MEL23 and 537MEL xenografts (91% and 63% inhibition, respectively; P < .001) and MAPK pathway activation in vivo. CONCLUSIONS: Taken together, our results provide evidence for a functional role of PAK1 in BRAF wild-type melanoma and therapeutic use of PAK inhibitors in this indication.


Subject(s)
Melanoma/metabolism , Skin Neoplasms/drug therapy , p21-Activated Kinases/drug effects , p21-Activated Kinases/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Immunoprecipitation , Ipilimumab , Melanoma/drug therapy , Mice , Mice, Nude , Proto-Oncogene Proteins B-raf , Signal Transduction/drug effects , Skin Neoplasms/metabolism , Transplantation, Heterologous
14.
PLoS One ; 8(2): e56765, 2013.
Article in English | MEDLINE | ID: mdl-23468880

ABSTRACT

PURPOSE: Tumors with oncogenic dependencies on the HER family of receptor tyrosine kinases (RTKs) often respond well to targeted inhibition. Our previous work suggested that many cell lines derived from squamous cell carcinomas of the head and neck (SCCHNs) depend on autocrine signaling driven by HER2/3 dimerization and high-level co-expression of HRG. Additionally, results from a Phase I trial of MEHD7495A, a dual-action antibody that blocks ligand binding to EGFR and HER3, suggest that high-level HRG expression was associated with clinical response in SCCHN patients. Here we explore the hypothesis that high-level HRG expression defines a subpopulation of SCCHNs with activated HER3. EXPERIMENTAL DESIGN: qRT-PCR expression profiling was performed on >750 tumors of diverse origin, including >150 therapy-naïve, primary, and recurrent SCCHNs. Activated HER3, defined by immunoprecipitation of phospho-HER3, was compared to HRG expression in SCCHN samples. Paracrine versus autocrine expression was evaluated using RNA-in situ hybridization. RESULTS: SCCHN tumors express the highest levels of HRG compared to a diverse collection of other tumor types. We show that high HRG expression is associated with activated HER3, whereas low HRG expression is associated with low HER3 activation in SCCHN tumors. Furthermore, HRG expression is higher in recurrent SCCHN compared to patient-matched therapy naïve specimens. CONCLUSIONS: HRG expression levels define a biologically distinct subset of SCCHN patients. We propose that high-level expression of HRG is associated with constitutive activation of HER3 in SCCHN and thus defines an actionable biomarker for interventions targeting HER3.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-3/metabolism , Biomarkers, Tumor , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Gene Expression , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Immunohistochemistry , Neuregulin-1/genetics , Receptor, ErbB-3/genetics , Squamous Cell Carcinoma of Head and Neck
15.
Clin Cancer Res ; 19(4): 929-37, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23169435

ABSTRACT

PURPOSE: We evaluated the prognostic and predictive use of circulating VEGF-A levels in phase III trials of bevacizumab in colorectal cancer, lung cancer, and renal cell carcinoma. METHODS: Baseline plasma samples from 1,816 patients were analyzed for VEGF-A using an ELISA, which recognizes the major isoforms with equivalent sensitivity. HR and 95% confidence intervals (CI) for study end points were estimated using Cox regression analysis. A subset of matched archival tumor samples was analyzed for VEGF-A expression using in situ hybridization. RESULTS: Higher VEGF-A levels showed trends toward adverse prognostic significance in the control arms of multiple trials, reaching statistical significance for overall survival (OS) in AVF2107 (highest vs. lowest 50%: HR = 1.76; 95% CI, 1.28-2.41), AVAiL (HR = 1.52; 95% CI, 1.16-2.00), and AVOREN (HR = 1.67; 95% CI, 1.18-2.36). In predictive analyses, the HRs for progression-free survival were similar across low and high VEGF-A subgroups and favored bevacizumab-containing treatment. In the low VEGF-A subgroups, HRs (95% CIs) were 0.61 (0.43-0.87) in AVF2107, 0.71 (0.43-1.16) in E4599, 0.74 (0.59-0.94) in AVAiL (low-dose), 0.89 (0.70-1.13) in AVAiL (high-dose), and 0.56 (0.40-0.78) in AVOREN. Analyses of OS data have shown similar results. No correlation between primary tumor VEGF-A expression and plasma VEGF-A levels was observed. CONCLUSIONS: In this comprehensive evaluation, pretreatment total circulating VEGF-A was prognostic for outcome in metastatic colorectal, lung, and renal cell cancers, but it was not predictive for bevacizumab-based treatment benefit.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers, Tumor/blood , Carcinoma, Renal Cell/drug therapy , Colorectal Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/blood , Adult , Aged , Aged, 80 and over , Bevacizumab , Carcinoma, Renal Cell/blood , Clinical Trials, Phase III as Topic , Colorectal Neoplasms/blood , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/blood , Male , Middle Aged , Neoplasm Metastasis , Prognosis , Proportional Hazards Models , Randomized Controlled Trials as Topic , Treatment Outcome
16.
Blood ; 121(6): 918-29, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23134786

ABSTRACT

Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.


Subject(s)
DNA-Binding Proteins/genetics , Erythroblasts/metabolism , Hematopoietic Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Calcium-Binding Proteins , Cell Differentiation/genetics , Cell Proliferation , Cellular Microenvironment/genetics , DNA-Binding Proteins/metabolism , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , T-Lymphocytes/metabolism , Time Factors , Transcription Factors/metabolism , Transcriptome/genetics
17.
Gut ; 62(7): 1012-23, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22637696

ABSTRACT

OBJECTIVE: Wnt/Tcf, Lgr5, Ascl2 and/or Bmi1 signalling is believed to define the mouse intestinal stem cell niche(s) from which adenomas arise. The aim of this study was to determine the relevance of these putative intestinal stem cell markers to human colorectal cancer. DESIGN: 19 putative intestinal stem cell markers, including Ascl2 and Lgr5, were identified from published data and an evaluation of a human colorectal gene expression database. Associations between these genes were assessed by isotopic in situ hybridisation (ISH) in 57 colorectal adenocarcinomas. Multiplex fluorescent ISH and chromogenic non-isotopic ISH were performed to confirm expression patterns. The prognostic significance of Lgr5 was assessed in 891 colorectal adenocarcinomas. RESULTS: Ascl2 and Lgr5 were expressed in 85% and 74% of cancers respectively, and expression was positively correlated (p=0.003). Expression of Bmi1 was observed in 47% of cancers but was very weak in 98% of cases with expression. Both Ascl2 and/or Lgr5 were positively correlated with the majority of genes in the signature but neither was correlated with Cdk6, Gpx2, Olfm4 or Tnfrsf19. Lgr5 did not have prognostic significance. CONCLUSION: These data suggest that 74-85% of colorectal cancers express a Lgr5/Ascl2 associated signature and support the hypothesis that they derive from Lgr5(+)/Ascl2(+) crypt stem cells, not Bmi1(+) stem cells. However, Olfm4 was not found to be a useful marker of Lgr5(+) cells in normal colon or tumours. In this large series, Lgr5 expression is not associated with increased tumour aggressiveness, as might be expected from a cancer stem cell marker.


Subject(s)
Adenocarcinoma/diagnosis , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Stem Cells/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Databases, Genetic , Female , Gene Expression Profiling/methods , Genes, Neoplasm , Humans , In Situ Hybridization , Male , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prognosis , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
18.
Cancer Res ; 72(22): 5966-75, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22983922

ABSTRACT

The RAS genes are the most commonly mutated oncogenes in human cancer and present a particular therapeutic dilemma, as direct targeting of Ras proteins by small molecules has proved difficult. Signaling pathways downstream of Ras, in particular Raf/Mek/Erk and PI3K/Akt/mTOR, are dominated by lipid and protein kinases that provide attractive alternate targets in Ras-driven tumors. As p21-activated kinase 1 (Pak1) has been shown to regulate both these signaling pathways and is itself upregulated in many human cancers, we assessed the role of Pak1 in Ras-driven skin cancer. In human squamous cell carcinoma (SCC), we found a strong positive correlation between advanced stage and grade and PAK1 expression. Using a mouse model of Kras-driven SCC, we showed that deletion of the mouse Pak1 gene led to markedly decreased tumorigenesis and progression, accompanied by near total loss of Erk and Akt activity. Treatment of Kras(G12D) mice with either of two distinct small molecule Pak inhibitors (PF3758309 and FRAX597) caused tumor regression and loss of Erk and Akt activity. Tumor regression was also seen in mice treated with a specific Mek inhibitor, but not with an Akt inhibitor. These findings establish Pak1 as a new target in KRAS-driven tumors and suggest a mechanism of action through the Erk, but not the Akt, signaling pathway.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Proto-Oncogene Proteins/metabolism , Pyridones/pharmacology , Pyrimidines/pharmacology , Skin Neoplasms/enzymology , p21-Activated Kinases/biosynthesis , ras Proteins/metabolism , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Deletion , Genes, ras , Humans , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Grading , Neoplasm Staging , Oncogene Protein v-akt/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/deficiency , p21-Activated Kinases/genetics , ras Proteins/genetics
19.
J Clin Pathol ; 65(11): 989-95, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22859394

ABSTRACT

AIM: Recently, the Oncotype DX recurrence score, which measures a gene expression signature including markers of tumour proliferation, was validated as a prognostic signature in colorectal cancer. This study aimed to evaluate whether the Ki67 proliferation index can provide similar prognostic and predictive information. METHODS: Tissue microarrays were constructed from triplicate cores of colorectal cancer. Immunohistochemistry for Ki67 was performed with the SP6 antibody and the percentage of positive tumour cells scored. Prognostic significance was evaluated in 867 cancers (601 events) using Cox proportional hazards models. RESULTS: The Ki67 labelling index, divided at the median, was not a statistically or clinically significant prognostic factor in univariate analyses of 5-year overall survival (HR 0.98, 95% CI 0.84 to 1.15, p=0.84). Multivariate analyses were similarly non-significant. However, in Dukes' stage C patients, the high Ki67 subgroup derived a greater 5-year overall survival benefit from chemotherapy (HR 0.32, 95% CI 0.21 to 0.51, p<0.0001) than the low subgroup (HR 0.57, 95% CI 0.37 to 0.89, p=0.011). CONCLUSIONS: The Ki67 proliferation index is not a useful prognostic factor in colorectal cancer, but deserves further evaluation as a predictive factor for the incremental benefit derived from adjuvant chemotherapy.


Subject(s)
Adenocarcinoma/diagnosis , Colorectal Neoplasms/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Female , Humans , Ki-67 Antigen/metabolism , Male , Middle Aged , Neoplasm Recurrence, Local , Prognosis , Proportional Hazards Models , Survival Rate , Tissue Array Analysis , United Kingdom/epidemiology , Young Adult
20.
J Pathol ; 227(4): 417-30, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22611036

ABSTRACT

Resistance to anti-angiogenic therapy can occur via several potential mechanisms. Unexpectedly, recent studies showed that short-term inhibition of either VEGF or VEGFR enhanced tumour invasiveness and metastatic spread in preclinical models. In an effort to evaluate the translational relevance of these findings, we examined the consequences of long-term anti-VEGF monoclonal antibody therapy in several well-validated genetically engineered mouse tumour models of either neuroendocrine or epithelial origin. Anti-VEGF therapy decreased tumour burden and increased overall survival, either as a single agent or in combination with chemotherapy, in all four models examined. Importantly, neither short- nor long-term exposure to anti-VEGF therapy altered the incidence of metastasis in any of these autochthonous models, consistent with retrospective analyses of clinical trials. In contrast, we observed that sunitinib treatment recapitulated previously reported effects on tumour invasiveness and metastasis in a pancreatic neuroendocrine tumour (PNET) model. Consistent with these results, sunitinib treatment resulted in an up-regulation of the hypoxia marker GLUT1 in PNETs, whereas anti-VEGF did not. These results indicate that anti-VEGF mediates anti-tumour effects and therapeutic benefits without a paradoxical increase in metastasis. Moreover, these data underscore the concept that drugs targeting VEGF ligands and receptors may affect tumour metastasis in a context-dependent manner and are mechanistically distinct from one another.


Subject(s)
Adenocarcinoma/drug therapy , Antibodies, Anti-Idiotypic/therapeutic use , Lung Neoplasms/drug therapy , Neoplasm Metastasis/drug therapy , Neuroendocrine Tumors/drug therapy , Pancreatic Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Vascular Endothelial Growth Factor A/immunology , Adenocarcinoma/genetics , Angiogenesis Inhibitors/therapeutic use , Animals , Disease Models, Animal , Drug Therapy, Combination , Genetic Engineering , Indoles/therapeutic use , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Mice , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pyrroles/therapeutic use , Small Cell Lung Carcinoma/genetics , Sunitinib , Vascular Endothelial Growth Factor A/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...