Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38386042

ABSTRACT

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.

2.
Mem Inst Oswaldo Cruz ; 118: e220144, 2023.
Article in English | MEDLINE | ID: mdl-37018795

ABSTRACT

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES: To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS: Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS: In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION: RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , RNA, Viral , Microglia/metabolism , Antibodies, Viral , Recombinant Proteins , Macrophages/metabolism
3.
Mem. Inst. Oswaldo Cruz ; 118: e220144, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1430845

ABSTRACT

BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Article in English | MEDLINE | ID: mdl-35665831

ABSTRACT

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Subject(s)
Dimethyl Fumarate , Neuroprotective Agents , Animals , Astrocytes , Depression , Kelch-Like ECH-Associated Protein 1 , Mice , Microglia , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Tumor Necrosis Factor-alpha
5.
Behav Brain Res ; 419: 113667, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34798169

ABSTRACT

Mirtazapine (MIRT) is a multi-target antidepressant used in treatment of severe depression with promising efficacy, but also with important side effects, mainly sedation and weight gain. Thus, the present study aimed to test the effects of the neuroprotective antioxidant lipoic acid (ALA) in the reversal of weight and metabolic changes induced by MIRT in corticosterone-induced depression model in mice, as well as proposed mechanisms for their association antidepressant and pro-cognitive effects. To do these male Swiss mice received Tween 80 (control), corticosterone (CORT 20 mg / kg), MIRT (3 mg / kg) and ALA (100 or 200 mg / kg), alone or associated for 21 days. After this, the animals were subjected to behavioral tests for affective and cognitive domains. Daily weight changes, blood cholesterol fractions and corticosterone were measured. Also, hippocampus (HC) protein expression of the serotonin transporter (SERT), synaptophysin, protein kinase B-Akt (total and phosphorylated) and the cytokines IL-4 and IL-6 were investigated. CORT induced a marked depression-like behavior, memory deficits, metabolic changes (total cholesterol and LDL) and increased serum corticosterone. Also, CORT increased SERT expression in the HC. MIRT alone or combined with ALA sustained its antidepressant-like effect, as well as reversed CORT-induced impairment in spatial recognition memory. Additionally, the association MIRT+ALA200 reversed the weight gain induced by the former antidepressant, as well as reduced serum corticosterone levels and SERT expression in the HC. ALA alone induced significant weight loss and reduced total cholesterol and HDL fraction. Our findings provide promising evidence about the ALA potential to prevent metabolic and weight changes associated to MIRT, without impair its antidepressant and pro-cognition actions. Therefore, ALA+MIRT combination could represent a new therapeutic strategy for treating depression with less side effects.


Subject(s)
Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Cognitive Dysfunction , Corticosterone/pharmacology , Depression , Mirtazapine/pharmacology , Thioctic Acid/pharmacology , Weight Gain/drug effects , Animals , Antidepressive Agents/adverse effects , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Corticosterone/blood , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mirtazapine/adverse effects
6.
Behav Pharmacol ; 32(2&3): 123-141, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33595954

ABSTRACT

Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.


Subject(s)
Drug Design , Mental Disorders/drug therapy , Tetracyclines/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Humans , Inflammation/drug therapy , Inflammation/pathology , Mental Disorders/physiopathology , Molecular Targeted Therapy , Neuroprotective Agents/pharmacology , Translational Research, Biomedical/methods
7.
Eur Neuropsychopharmacol ; 42: 57-74, 2021 01.
Article in English | MEDLINE | ID: mdl-33191076

ABSTRACT

Immune-inflammatory mechanisms are involved in the pathophysiology of bipolar disorder. Tetracyclines present neuroprotective actions based on their anti-inflammatory and microglia suppressant effects. Doxycycline (DOXY) is a tetracycline that demonstrates a better usage profile with protective actions against inflammation and CNS injury. Here, we investigated the effects of DOXY against behavioral, neuroinflammatory, and pro-oxidative changes induced by the d-amphetamine mania model. Adult mice were given d-amphetamine 2.0 mg/kg or saline for 14 days. Between days 8 and 14, received lithium, DOXY (25 or 50 mg/kg), or their combination (lithium+DOXY) on both doses. We collected the brain areas prefrontal cortex (PFC), hippocampus, and amygdala to evaluate inflammatory and oxidative alterations. D-amphetamine induced hyperlocomotion and impairment in recognition and working memory. Lithium reversed hyperlocomotion but could not restore cognitive alterations. DOXY alone (at both doses) or combined with lithium reversed d-amphetamine-induced cognitive changes. DOXY, better than lithium, reversed the d-amphetamine-induced rise in TNFα, MPO, and lipid peroxidation. DOXY reduced the hippocampal expression of Iba1 (a marker of microglial activation), inducible nitric oxide synthase (iNOS), and nitrite. Combined with lithium, DOXY increased the phosphorylated (inactivated) form of GSK3ß (Ser9). Therefore, DOXY alone or combined with lithium reversed cognitive impairment and neuroinflammation induced by the mice's d-amphetamine model. This study points to DOXY as a promising adjunctive tool for bipolar disorder treatment focused on cognition and neuroimmune changes. Our data provide the first rationale for clinical trials investigating DOXY therapeutic actions in bipolar disorder mania.


Subject(s)
Bipolar Disorder , Cognitive Dysfunction , Animals , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Dextroamphetamine/pharmacology , Disease Models, Animal , Doxycycline/pharmacology , Doxycycline/therapeutic use , Drug Repositioning , Mania , Mice , Neuroinflammatory Diseases , Oxidative Stress
8.
J Affect Disord ; 268: 188-200, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32174477

ABSTRACT

BACKGROUND: Depressed patients present increased plasma levels of lipopolysaccharide (LPS) and neuroinflammatory alterations. Here, we determined the neuroimmune effects of different classes of ADs by using the LPS inflammatory model of depression. METHODS: Male rats received amitriptyline (AMI) a tricyclic, S-citalopram (ESC) a selective serotonin reuptake inhibitor, tranylcypromine (TCP) a monoamine oxidase inhibitor, vortioxetine (VORT) a multimodal AD or saline for ten days. One-hour after the last AD administration, rats were exposed to LPS 0.83 mg/kg or saline and 24 h later were tested for depressive-like behavior. Plasma corticosterone, brain levels of nitrite, pro- and anti-inflammatory cytokines, phospho-cAMP Response Element-Binding Protein (CREB) and nuclear factor (NF)-kB p 65 were determined. RESULTS: LPS induced despair-like, impaired motivation/self-care behavior and caused anhedonia. All ADs prevented LPS-induced despair-like behavior, but only VORT rescued impaired self-care behavior. All ADs prevented LPS-induced increase in brain pro-inflammatory cytokines [interleukin (IL)-1ß and IL-6] and T-helper 1 cytokines [tumor necrosis factor (TNF)-α and interferon-γ]. VORT increased striatal and hypothalamic IL-4 levels. All ADs prevented LPS-induced neuroendocrine alterations represented by increased levels of hypothalamic nitrite and plasma corticosterone response. VORT and ESC prevented LPS-induced increase in NF-kBp65 hippocampal expression, while ESC, TCP and VORT, but not IMI, prevented the alterations in phospho-CREB expression. LIMITATIONS: LPS model helps to understand depression in a subset of depressed patients with immune activation. The levels of neurotransmitters were not determined. CONCLUSION: This study provides new evidence for the immunomodulatory effects of ADs, and shows a possible superior anti-inflammatory profile of TCP and VORT.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Animals , Brain/metabolism , Citalopram/pharmacology , Corticosterone/blood , Cytokines/metabolism , Depression/prevention & control , Hippocampus/metabolism , Humans , Interferon-gamma/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Male , Mice , Rats , Selective Serotonin Reuptake Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism
9.
Article in English | MEDLINE | ID: mdl-31954756

ABSTRACT

Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 µg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.


Subject(s)
Bipolar Disorder/drug therapy , Dextroamphetamine/toxicity , Glucagon-Like Peptide-1 Receptor/agonists , Liraglutide/administration & dosage , Lithium/administration & dosage , Mania/drug therapy , Memory Disorders/drug therapy , Animals , Bipolar Disorder/chemically induced , Bipolar Disorder/psychology , Drug Synergism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Mania/chemically induced , Mania/psychology , Memory Disorders/chemically induced , Memory Disorders/psychology , Mice
10.
Metab Brain Dis ; 34(3): 909-925, 2019 06.
Article in English | MEDLINE | ID: mdl-30798429

ABSTRACT

Endometriosis is a gynecological condition affecting 10% of women in reproductive age. High rates of depression and anxiety are observed in these patients. The mechanisms underlying endometriosis-induced behavioral alterations are still elusive. Animal models provide a useful tool to study the temporal sequence and biological pathways involved in this disease and comorbid states. Here, we sought to characterize time-related behavioral alterations in rats submitted to endometriosis model (EM) induced by peritoneal auto-transplantation of uterine tissues weekly for three weeks. Corticosterone stress reactivity, oxidative stress markers - reduced glutathione (GSH), lipid peroxidation, activity of superoxide dismutase (SOD) and myeloperoxidase (MPO) - and brain-derived-neurotrophic factor (BDNF) levels in the hippocampus were also evaluated. We observed a progressive increase in anxiety-like behavior from 14th to 21st days post-EM. Despair-like behavior was observed from the 14th day post-EM on, while anhedonia and apathetic-like behaviors accompanied by increased corticosterone stress response were detected on 21 days post-EM. Increased pain sensitivity was observed from the 7th day post-EM and was accompanied by increased endometrioma weight. The pro-oxidative alterations, decreased GSH and increased SOD activity were observed on 21 days post-EM, except for lipid peroxidation that was altered from the 14th day. Decreased BDNF also occurred on the 21st day. Therefore, this study demonstrates that EM is related to several features of clinical depression and proposes the contribution of hippocampal oxidative state and neurotrophic support for the emergence of these changes. Our results support the use of this model as a useful tool to test new strategies for endometriosis-related neuropsychiatric symptoms.


Subject(s)
Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Endometriosis/physiopathology , Hippocampus/drug effects , Animals , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Depression/chemically induced , Depression/metabolism , Depressive Disorder/chemically induced , Depressive Disorder/metabolism , Disease Models, Animal , Female , Hippocampus/metabolism , Oxidative Stress/drug effects , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...