Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 86(22): 16026-16034, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34343004

ABSTRACT

An electrochemical procedure for the α-arylation of ketones has been developed. The method is based on the generation and one-pot anodic oxidation of silyl enol ethers in the presence of the arene. This strategy avoids isolation of the silyl enol intermediate and the utilization of external supporting electrolytes. Intermolecular arylations, which had not been reported so far, are possible when electron-rich arenes are utilized as coupling partners. The method has been demonstrated for a wide variety of aryl ketones and activated arenes, with moderate to good yields (up to 69%) obtained. Mechanistic insights and a theoretical rationale that explains the ketone α-arylation versus dimerization selectivity are also presented.


Subject(s)
Ethers , Ketones , Oxidation-Reduction
2.
Org Lett ; 21(19): 7970-7975, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31513422

ABSTRACT

While several trifluoromethylation reactions involving the electrochemical generation of CF3 radicals via anodic oxidation have been reported, the alternative cathodic, reductive radical generation has remained elusive. Herein, the first cathodic trifluoromethylation of arenes and heteroarenes is reported. The method is based on the electrochemical reduction of an unstable triflyltriethylammonium complex generated in situ from inexpensive triflyl chloride and triethylamine, which produces CF3 radicals that are trapped by the arenes on the cathode surface.

3.
Org Biomol Chem ; 17(14): 3529-3537, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30896005

ABSTRACT

An in-depth study of the reaction of electrochemically generated trifluoromethyl radicals with aryl alkynes in the presence of water is presented. The radicals are readily generated by anodic oxidation of sodium triflinate, an inexpensive and readily available CF3 source, with concomitant reduction of water. Two competitive pathways, i.e. aryl trifluoromethylation vs. oxytrifluoromethylation of the alkyne, which ultimately lead to the generation of α-trifluoromethyl ketones, have been observed. The influence of several reaction parameters on the reaction selectivity, including solvent effects, electrode materials and substitution patterns on the aromatic ring of the substrate, has been investigated. A mechanistic rationale for the generation α-trifluoromethyl ketones based on cyclic voltammetry data and radical trapping experiments is also presented. DFT calculations carried out at the M06-2X/6-311+G(d,p) level on the two competing pathways account for the observed selectivity.

4.
Chemistry ; 24(65): 17234-17238, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30285302

ABSTRACT

A mild, catalyst-free electrochemical oxytrifluoromethylation of alkenes has been developed. The procedure is based on the paired electrolysis of sodium triflinate and water in an undivided cell. Anodic oxidation of the triflinate anion generates trifluoromethyl radicals that react with the alkene. Water plays a dual role as oxidant for the cathode and nucleophile. The method has been utilized to prepare a diverse set of 1-hydroxy-2-trifluoromethyl compounds in moderate to excellent yields (27-94 %). Alcohols have also been tested as nucleophiles for this versatile method with moderate yields. Facile recycling of the electrolyte has been demonstrated, and application of electricity avoids the use of stoichiometric amounts of oxidizers in a safe and environmentally benign reaction.

5.
Adv Synth Catal ; 360(12): 2394-2401, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30333715

ABSTRACT

Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity. The protocol is generally applicable to acid phosphatases and compatible with a range of diverse substrates. Preparative-scale transformations using acetyl phosphate synthesized from cheap starting materials yielded multiple grams of various sugar phosphates with up to 433 g L-1 h-1 space-time yield and 75% reduction of barium phosphate waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...