Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 519, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483481

ABSTRACT

The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.


Subject(s)
Climate Change , Climate , Ecosystem , Forests , Trees/growth & development , Conservation of Natural Resources/methods , Forestry/methods , Geography , Models, Theoretical , Rain , Seasons , Trees/classification
2.
PLoS One ; 13(6): e0198453, 2018.
Article in English | MEDLINE | ID: mdl-29856842

ABSTRACT

Herbivores can modify the rate of shrub and treeline advance. Both direct and indirect effects of herbivory may simultaneously interact to affect the growth rates of plants at this ecotone. We investigated the effect of snowshoe hare herbivory on the height of white spruce at two treeline locations in Alaska, USA. White spruce is expanding its distribution both upwards in elevation and northward in latitude because of climate warming, and snowshoe hares are already present in areas likely to be colonized by spruce. We hypothesized that herbivory would result in browsed individuals having reduced height, suggesting herbivory is a direct, negative effect on spruce treeline advance. We found an interactive effect between browsing history and spruce age. When young (under 30 years old), individuals that were browsed tended to be taller than unbrowsed individuals. However, older seedlings (over 30 years old) that had been browsed were shorter than unbrowsed individuals of the same age. Hares suppress faster growing individuals that are initially taller by preferentially browsing them as they emerge above the winter snowpack. This reduced height, in combination with increased mortality associated with browsing, is predicted to slow the advance of both latitudinal and altitudinal treeline expansions and alter the structure of treeline forests.


Subject(s)
Hares/physiology , Picea/growth & development , Animals , Bayes Theorem , Climate Change , Ecosystem , Herbivory , Models, Biological
3.
Ecology ; 98(10): 2506-2512, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28766697

ABSTRACT

Treelines in Alaska are advancing in elevation and latitude because of climate warming, which is expanding the habitat available for boreal wildlife species, including snowshoe hares (Lepus americanus). Snowshoe hares are already present in tall shrub communities beyond treeline and are the main browser of white spruce (Picea glauca), the dominant tree species at treeline in Alaska. We investigated the processes involved in a "snowshoe hare filter" to white spruce establishment near treeline in Denali National Park, Alaska, USA. We modeled the pattern of spruce establishment from 1970 to 2009 and found that fewer spruce established during periods of high hare abundance. Multiple factors interact to influence browsing of spruce, including the hare cycle, snow depth and the characteristics of surrounding vegetation. Hares are abundant at treeline and may exclude spruce from otherwise optimal establishment sites, particularly floodplain locations with closed shrub canopies. The expansion of white spruce treeline in response to warming climate will be strongly modified by the spatial and temporal dynamics of the snowshoe hare filter.


Subject(s)
Forests , Hares/physiology , Trees , Alaska , Animals , Climate , Ecosystem
4.
Ecol Lett ; 14(4): 373-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21332901

ABSTRACT

Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.


Subject(s)
Climate Change , Ecosystem , Picea/growth & development , Trees/growth & development , Alaska , Droughts , History, 20th Century
SELECTION OF CITATIONS
SEARCH DETAIL
...