Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
mSystems ; 9(1): e0109823, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38059647

ABSTRACT

Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.


Subject(s)
Gastritis, Atrophic , Gastritis , Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Animals , Humans , Gastritis, Atrophic/chemically induced , Stomach Neoplasms/pathology , Gerbillinae , Gastric Mucosa/pathology , Gastritis/pathology , Atrophy/pathology , Helicobacter Infections/complications , Precancerous Conditions/pathology , Carcinogenesis/pathology
2.
J Am Soc Mass Spectrom ; 32(10): 2583-2591, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34515472

ABSTRACT

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same organ used for IMS was analyzed by LC-MS/MS, and data are available via ProteomeXchange with identifier PXD023877. These identified proteins were then digested in silico to generate a database of theoretical peptides to then match to MALDI IMS data sets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list based on mass accuracy (5 ppm mass error). This resulted in 1337 ± 96 (n = 3) peptides and 2076 ± 362 (n = 3) unique peptides matched to IMS peaks from MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 276 ± 20 proteins with MALDI-1 and 401 ± 60 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.


Subject(s)
Histological Techniques/methods , Molecular Imaging/methods , Peptide Fragments/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Chromatography, Liquid , Humans , Kidney/chemistry , Kidney/diagnostic imaging , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Trypsin/metabolism
3.
NPJ Breast Cancer ; 6: 27, 2020.
Article in English | MEDLINE | ID: mdl-32613078

ABSTRACT

Distinguishing low-grade phyllodes tumor from fibroadenoma is practically challenging due to their overlapping histologic features. However, the final interpretation is essential to surgeons, who base their management on the final pathology report. Patients who receive a diagnosis of fibroadenoma might not undergo any additional intervention while lumpectomy with wide margins is the standard of care for phyllodes tumor, which can have significant cosmetic consequences. We studied the clinical, immunophenotypic, and proteomics profiles of 31 histologically confirmed low-grade phyllodes tumor and 30 fibroadenomas. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) and immunohistochemistry for Ki-67, p53, ß-catenin, and E-cadherin were performed on all cases. After the mass spectra for all 31 cases of low-grade phyllodes tumor and 30 cases of fibroadenoma were collected, an average peak value for all cases was generated. There was no significant difference in the overall mass spectra pattern in any of the peaks identified. There was also overlap in the percentage of cells staining positive for Ki-67, p53, ß-catenin, and E-cadherin. The two groups of patients showed no statistically significant difference in age, tumor size, or disease-free survival. Neither group developed malignant transformation, distant metastases, or disease-related mortality. We have demonstrated low-grade phyllodes tumor and fibroadenoma to show significant overlapping clinical and proteomics features.

4.
J Histochem Cytochem ; 68(6): 403-411, 2020 06.
Article in English | MEDLINE | ID: mdl-32466698

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) and chromophobe renal cell carcinoma (chRCC) are relatively common tumors that can have significant risk for mortality. Treatment and prognostication in renal cell carcinoma (RCC) are dependent upon correct histologic typing. ccRCC and chRCC are generally straightforward to diagnose based on histomorphology alone. However, high-grade ccRCC and chRCC can sometimes resemble each other morphologically, particularly in small biopsies. Multiple immunostains and/or colloidal iron stain are sometimes required to differentiate the two. Imaging mass spectrometry (IMS) allows simultaneous spatial mapping of thousands of biomarkers, using formalin-fixed paraffin-embedded tissue sections. In this study, we evaluate the ability of IMS to differentiate between World Health Organization/International Society for Urological Pathology grade 3 ccRCC and chRCC. IMS spectra from a training set of 14 ccRCC and 13 chRCC were evaluated via support vector machine algorithm with a linear kernel for machine learning, building a classification model. The classification model was applied to a separate validation set of 6 ccRCC and 6 chRCC, with 19 to 20, 150-µm diameter tumor foci in each case sampled by IMS. Most evaluated tumor foci were classified correctly as ccRCC versus chRCC (99% accuracy, kappa=0.98), demonstrating that IMS is an accurate tool in differentiating high-grade ccRCC and chRCC.


Subject(s)
Carcinoma, Renal Cell/diagnostic imaging , Kidney Neoplasms/diagnostic imaging , Mass Spectrometry , Molecular Imaging , Adult , Aged , Aged, 80 and over , Cohort Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged
5.
J Mass Spectrom ; 54(8): 716-727, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31254303

ABSTRACT

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross-links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.


Subject(s)
Proteins/analysis , Specimen Handling/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Array Analysis/methods , Formaldehyde/chemistry , Humans , Paraffin Embedding , Proteolysis , Tissue Fixation , Trypsin/chemistry
6.
Sci Transl Med ; 10(432)2018 03 14.
Article in English | MEDLINE | ID: mdl-29540616

ABSTRACT

Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen Staphylococcus aureus, leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.


Subject(s)
Molecular Imaging/methods , Staphylococcus aureus/metabolism , Animals , Female , Host-Pathogen Interactions , Magnetic Resonance Imaging , Mass Spectrometry , Mice , Mice, Inbred BALB C , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...