Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 18(15): 16206-16, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20721006

ABSTRACT

We theoretically investigate the generation of quantum-correlated photon pairs through spontaneous four-wave mixing in chalcogenide As(2)S(3) waveguides. For reasonable pump power levels, we show that such photonic-chip-based photon-pair sources can exhibit high brightness (approximately 1 x 10(9) pairs/s) and high correlation (approximately 100) if the waveguide length is chosen properly or the waveguide dispersion is engineered. Such a high correlation is possible in the presence of Raman scattering because the Raman profile exhibits a low gain window at a Stokes shift of 7.4 THz, though it is constrained due to multi-pair generation. As the proposed scheme is based on photonic chip technologies, it has the potential to become an integrated platform for the implementation of on-chip quantum technologies.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 056408, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600766

ABSTRACT

A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are comparable, the polarization of the growing radiation is different from those of the maser and medium. In particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular polarization that may be relevant to pulsar radio emission.

SELECTION OF CITATIONS
SEARCH DETAIL