Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 94(25): 13903-8, 1997 Dec 09.
Article in English | MEDLINE | ID: mdl-9391125

ABSTRACT

A hypoxic/anoxic microenvironment has been proposed to exist within a vascular lesion due to intimal or medial cell proliferation in vascular diseases. Here, we examined whether hypoxia alters macrophage function by exposing murine macrophage-like RAW 264.7 (RAW) cells to hypoxia (2% O2). When cells were exposed to hypoxia, a significant number of RAW cells underwent apoptosis. Additionally, small subpopulations of RAW cells were resistant to hypoxia-induced apoptosis. Through repeated cycles of hypoxia exposure, hypoxia-induced apoptosis-resistant macrophages (HARMs) were selected; HARM cells demonstrate >70% resistance to hypoxia-induced apoptosis, as compared with the parental RAW cells. When heat shock protein (HSP) expression was examined after hypoxia, we observed a significant decrease in constitutive heat shock protein 70 (HSC 70) in RAW cells, but not in HARMs, as compared with the control normoxic condition (21% O2). In contrast, the expression level of glucose-regulated protein 78 (GRP 78) in RAW and HARM cells after hypoxia treatment was not altered, suggesting that HSC 70 and not GRP 78 may play a role in protection against hypoxia-induced apoptosis. When tumor necrosis factor alpha (TNF-alpha) production was examined after hypoxic treatment, a significant increase in TNF-alpha production in HARM but decrease in RAW was observed, as compared with cells cultured in normoxic conditions. HARM cells also exhibit a much lower level of modified-LDL uptake than do RAW cells, suggesting that HARMs may not transform into foam cells. These results suggest that a selective population of macrophages may adapt to potentially pathological hypoxic conditions by overcoming the apoptotic signal.


Subject(s)
Apoptosis/physiology , Cell Hypoxia/physiology , Heat-Shock Proteins , Inflammation Mediators/metabolism , Macrophages/cytology , Macrophages/metabolism , Animals , Carrier Proteins/metabolism , Cell Line , Endoplasmic Reticulum Chaperone BiP , HSC70 Heat-Shock Proteins , HSP70 Heat-Shock Proteins/metabolism , Lipoproteins, LDL/metabolism , Mice , Microscopy, Confocal , Molecular Chaperones/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...