Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 240(5): e14139, 2024 May.
Article in English | MEDLINE | ID: mdl-38509816

ABSTRACT

AIM: Endurance exercise training is known to increase mitochondrial respiration in skeletal muscle. However, the molecular mechanisms behind this are not fully understood. Myoglobin (Mb) is a member of the globin family, which is highly expressed in skeletal and cardiac muscles. We recently found that Mb localizes inside mitochondria in skeletal muscle and interacts with cytochrome c oxidase subunit IV (COXIV), a subunit of mitochondrial complex IV, which regulates respiration by augmenting complex IV activity. In the present study, we investigated the effect of endurance training on Mb-COXIV interaction within mitochondria in rat skeletal muscle. METHODS: Eight-week-old male Wistar rats were subjected to 6-week treadmill running training. Forty-eight hours after the last training session, the plantaris muscle was removed under anesthesia and used for biochemical analysis. RESULTS: The endurance training increased mitochondrial content in the skeletal muscle. It also augmented complex IV-dependent oxygen consumption and complex IV activity in isolated mitochondria from skeletal muscle. Furthermore, endurance training increased Mb expression at the whole muscle level. Importantly, mitochondrial Mb content and Mb-COXIV binding were increased by endurance training. CONCLUSION: These findings suggest that an increase in mitochondrial Mb and the concomitant enhancement of Mb interaction with COXIV may contribute to the endurance training-induced upregulation of mitochondrial respiration by augmenting complex IV activity.


Subject(s)
Electron Transport Complex IV , Muscle, Skeletal , Myoglobin , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Muscle, Skeletal/metabolism , Electron Transport Complex IV/metabolism , Rats , Physical Conditioning, Animal/physiology , Myoglobin/metabolism , Endurance Training , Mitochondria, Muscle/metabolism , Oxygen Consumption/physiology , Physical Endurance/physiology
2.
Data Brief ; 53: 110091, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328284

ABSTRACT

Chronic heat stress induces mitochondrial adaptation in skeletal muscle. However, the effect of chronic heat stress on the respiratory function per mitochondria in skeletal muscle has not been well studied. Here, the present study reports on the effect of 3-weeks heat stress on muscle mitochondrial respiration using male C57BL/6JJ mice at age 21 weeks. Mice were randomly assigned to either the control group (n = 6) or passive heat group (n = 6). After 3-weeks of heat stress, the right triceps surae was removed and used for biochemical analysis. Protein expression was assessed by immunoblotting. Mitochondrial respiratory function was measured by Oxygraph-2k. The study also shows the impact of the heat stress on daily feeding, body weight, muscle weight, and protein expression of heat shock proteins (heat-response marker).

3.
Physiol Rep ; 11(7): e15632, 2023 04.
Article in English | MEDLINE | ID: mdl-37020386

ABSTRACT

Recently, we found that myoglobin (Mb) localizes in both the cytosol and mitochondrial intermembrane space in rodent skeletal muscle. Most proteins of the intermembrane space pass through the outer mitochondrial membrane via the translocase of the outer membrane (TOM) complex. However, whether the TOM complex imports Mb remains unknown. The purpose of this study was to investigate the involvement of the TOM complex in Mb import into the mitochondria. A proteinase K protection assay of mitochondria from C2C12 myotubes confirmed that Mb integrated into the mitochondria. An immunoprecipitation assay verified the interaction of Mb and TOM complex receptors (Tom20, Tom70) in isolated mitochondria. The assay showed a clear interaction of Mb with Tom20 and Tom70. A knockdown experiment using siRNA for TOM complex receptors (Tom20, Tom70) and TOM complex channel (Tom40) did not alter the amount of Mb expression in the mitochondrial fraction. These results suggested that Mb does not necessarily require the TOM complex for mitochondrial import of Mb. Although the physiological role of Mb interactions with TOM complex receptors remains unclear, further studies are needed to clarify how Mb enters the mitochondria independently of the TOM complex.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Membrane Transport Proteins/genetics , Myoglobin/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Carrier Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Protein Transport , Mitochondrial Proteins/metabolism
4.
Pflugers Arch ; 473(11): 1761-1773, 2021 11.
Article in English | MEDLINE | ID: mdl-34415396

ABSTRACT

The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.


Subject(s)
Acetyl Coenzyme A/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Animals , Fatty Acids/metabolism , Glucose/metabolism , Insulin Resistance/physiology , Magnetic Resonance Spectroscopy/methods , Myocardium/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Rats , Rats, Sprague-Dawley
5.
Radiology ; 300(3): 626-632, 2021 09.
Article in English | MEDLINE | ID: mdl-34156298

ABSTRACT

Background Pyruvate dehydrogenase (PDH) and lactate dehydrogenase are essential for adenosine triphosphate production in skeletal muscle. At the onset of exercise, oxidation of glucose and glycogen is quickly enabled by dephosphorylation of PDH. However, direct measurement of PDH flux in exercising human muscle is daunting, and the net effect of covalent modification and other control mechanisms on PDH flux has not been assessed. Purpose To demonstrate the feasibility of assessing PDH activation and changes in pyruvate metabolism in human skeletal muscle after the onset of exercise using carbon 13 (13C) MRI with hyperpolarized (HP) [1-13C]-pyruvate. Materials and Methods For this prospective study, sedentary adults in good general health (mean age, 42 years ± 18 [standard deviation]; six men) were recruited from August 2019 to September 2020. Subgroups of the participants were injected with HP [1-13C]-pyruvate at resting, during plantar flexion exercise, or 5 minutes after exercise during recovery. In parallel, hydrogen 1 arterial spin labeling MRI was performed to estimate muscle tissue perfusion. An unpaired t test was used for comparing 13C data among the states. Results At rest, HP [1-13C]-lactate and [1-13C]-alanine were detected in calf muscle, but [13C]-bicarbonate was negligible. During moderate flexion-extension exercise, total HP 13C signals (tC) increased 2.8-fold because of increased muscle perfusion (P = .005), and HP [1-13C]-lactate-to-tC ratio increased 1.7-fold (P = .04). HP [13C]-bicarbonate-to-tC ratio increased 8.4-fold (P = .002) and returned to the resting level 5 minutes after exercise, whereas the lactate-to-tC ratio continued to increase to 2.3-fold as compared with resting (P = .008). Conclusion Lactate and bicarbonate production from hyperpolarized (HP) [1-carbon 13 {13C}]-pyruvate in skeletal muscle rapidly reflected the onset and the termination of exercise. These results demonstrate the feasibility of imaging skeletal muscle metabolism using HP [1-13C]-pyruvate MRI and the sensitivity of in vivo pyruvate metabolism to exercise states. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Exercise , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Adult , Bicarbonates/metabolism , Feasibility Studies , Humans , Lactic Acid/metabolism , Male , Prospective Studies
6.
Physiol Rep ; 9(5): e14769, 2021 03.
Article in English | MEDLINE | ID: mdl-33650803

ABSTRACT

Mitochondria play a principal role in metabolism, and mitochondrial respiration is an important process for producing adenosine triphosphate. Recently, we showed the possibility that the muscle-specific protein myoglobin (Mb) interacts with mitochondrial complex IV to augment the respiration capacity in skeletal muscles. However, the precise mechanism for the Mb-mediated upregulation remains under debate. The aim of this study was to ascertain whether Mb is truly integrated into the mitochondria of skeletal muscle and to investigate the submitochondrial localization. Isolated mitochondria from rat gastrocnemius muscle were subjected to different proteinase K (PK) concentrations to digest proteins interacting with the outer membrane. Western blotting analysis revealed that the PK digested translocase of outer mitochondrial membrane 20 (Tom20), and the immunoreactivity of Tom20 decreased with the amount of PK used. However, the immunoreactivity of Mb with PK treatment was better preserved, indicating that Mb is integrated into the mitochondria of skeletal muscle. The mitochondrial protease protection assay experiments suggested that Mb localizes within the mitochondria in the inner membrane from the intermembrane space side. These results strongly suggest that Mb inside muscle mitochondria could be implicated in the regulation of mitochondrial respiration via complex IV.


Subject(s)
Cell Respiration/physiology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Myoglobin/metabolism , Adenosine Triphosphate/metabolism , Animals , Male , Mitochondria/metabolism , Rats, Wistar
7.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32161192

ABSTRACT

The maintenance of functional independence is the top priority of patients with chronic kidney disease (CKD). Defects in mitochondrial energetics may compromise physical performance and independence. We investigated associations of the presence and severity of kidney disease with in vivo muscle energetics and the association of muscle energetics with physical performance. We performed measures of in vivo leg and hand muscle mitochondrial capacity (ATPmax) and resting ATP turnover (ATPflux) using 31phosphorus magnetic resonance spectroscopy and oxygen uptake (O2 uptake) by optical spectroscopy in 77 people (53 participants with CKD and 24 controls). We measured physical performance using the 6-minute walk test. Participants with CKD had a median estimated glomerular filtration rate (eGFR) of 33 ml/min per 1.73 m2. Participants with CKD had a -0.19 mM/s lower leg ATPmax compared with controls but no difference in hand ATPmax. Resting O2 uptake was higher in CKD compared with controls, despite no difference in ATPflux. ATPmax correlated with eGFR and serum bicarbonate among participants with GFR <60. ATPmax of the hand and leg correlated with 6-minute walking distance. The presence and severity of CKD associate with muscle mitochondrial capacity. Dysfunction of muscle mitochondrial energetics may contribute to reduced physical performance in CKD.


Subject(s)
Energy Metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Physical Functional Performance , Renal Insufficiency, Chronic/metabolism , Adenosine Triphosphate/metabolism , Aged , Female , Glomerular Filtration Rate , Humans , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Oxygen Consumption/physiology , Renal Insufficiency, Chronic/physiopathology , Severity of Illness Index
8.
FEBS Lett ; 594(1): 135-143, 2020 01.
Article in English | MEDLINE | ID: mdl-31325365

ABSTRACT

Researchers have observed that a sialic acid (Sia)-supplemented neonatal diet leads to improved cognition in weanling piglets. However, whether cognitive improvement appears with different physiological backgrounds and persists into adulthood is not known. Here, we have established a convenient mouse model and used an 19 F NMR approach to address these questions, test the conditionally essential nutrient hypothesis about Sia supplementation, and assess the prospect of measuring Sia metabolism directly in vivo. Indeed, the neonatal mouse brain uptakes more Sia than the adult brain, and Sia supplementation of neonatal mice improves the cognitive performance of adult mice. The non-invasive 19 F NMR approach and viable mouse model opens unique opportunities for clarifying the interplay of nutritional supplementation, metabolism, and cognitive development.


Subject(s)
Brain/drug effects , Cognition , N-Acetylneuraminic Acid/pharmacology , Animals , Brain/growth & development , Brain/physiology , Dietary Supplements , Female , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , N-Acetylneuraminic Acid/administration & dosage
9.
Am J Physiol Regul Integr Comp Physiol ; 313(6): R740-R753, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28877871

ABSTRACT

Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1H NMR, 31P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O2, the analysis shows that at the onset of muscle contraction, O2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition.


Subject(s)
Exercise/physiology , Fingers , Magnetic Resonance Spectroscopy/methods , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Spectroscopy, Near-Infrared/methods , Adult , Aerobiosis/physiology , Energy Metabolism/physiology , Ergometry , Hemoglobins/metabolism , Humans , Ischemia , Male , Muscle Contraction/physiology , Muscle, Skeletal/blood supply , Myoglobin/metabolism , Oxygen/blood , Regional Blood Flow
10.
J. physiol. biochem ; 73(3): 359-370, ago. 2017. tab, graf
Article in Spanish | IBECS | ID: ibc-178887

ABSTRACT

Recent studies have suggested myoglobin (Mb) may have other cellular functions in addition to storing and transporting O2. Indeed, NMR experiments have shown that the saturated fatty acid (FA) palmitate (PA) can interact with myoglobin (Mb) in its ligated state (MbCO and MbCN) but does not interact with Mb in its deoxygenated state. The observation has led to the hypothesis that Mb can also serve as a fatty acid transporter. The present study further investigates fatty acid interaction with the physiological states of Mb using the more soluble but unsaturated fatty acid, oleic acid (OA). OA binds to MbCO but does not bind to deoxy Mb. OA binding to Mb, however, does not alter its O2 affinity. Without any Mb, muscle has a significantly lower level of triglyceride (TG). In Mb knock-out (MbKO) mice, both heart and skeletal muscles have lower level of TG relative to the control mice. Training further decreases the relative TG in the MbKO skeletal muscle. Nevertheless, the absence of Mb and lower TG level in muscle does not impair the MbKO mouse performance as evidenced by voluntary wheel running measurements. The results support the hypothesis of a complex physiological role for Mb, especially with respect to fatty acid metabolism


Subject(s)
Animals , Mice , Myoglobin/metabolism , Oleic Acid/metabolism , Triglycerides/metabolism , Mice, Knockout , Myoglobin/chemistry , Muscle, Skeletal/metabolism , Myocardium/metabolism , Myoglobin/chemistry , Oleic Acid/chemistry , Horses
11.
Lipids ; 52(8): 711-727, 2017 08.
Article in English | MEDLINE | ID: mdl-28639182

ABSTRACT

Previous studies have shown that palmitic acid (PAM) and oleic acid (OLE) can bind myoglobin (Mb). How fatty acids (FA) with different carbon chain lengths and sulfate substitution interact with Mb remains uncertain. Indeed, C8:0 and C10:0 fatty acids do not perturb the intensities of the 1H-NMR MbCN signal intensity at FA:Mb ratios below 2:1. Starting with C12:0, C12:0-C16:0, FA induce a noticeable spectral change. C12:0 and C14:0 FA affect both the 5- and 8-heme methyl signals, whereas the C16:0 FA perturbs only the 8-heme methyl signal. All C12:0-C16:0 saturated FA induce upfield shifts in the -CH2 peak of different FA in the presence of Mb. Increasing the apparent solubility with a sulfate group substitution enhances the FA interaction of lauric sulfate (LAU 1-SO4) but not palmitate sulfate acid (PAM 1-SO4). The detergent (DET) property of FA has no significant contribution. Common positive, neutral, and negative DET at DET:Mb ratio of 1:1 induce no perturbation of the MbCN spectra. The experiment observations establish a basis to investigate the molecular mechanism underlying the FA interaction with Mb.


Subject(s)
Fatty Acids/chemistry , Myoglobin/chemistry , Animals , Fatty Acids/metabolism , Horses/metabolism , Hydrogen-Ion Concentration , Myoglobin/metabolism , Oleic Acid/chemistry , Oleic Acid/metabolism , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Proton Magnetic Resonance Spectroscopy , Solubility
12.
Physiol Rep ; 5(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-28108649

ABSTRACT

Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2.


Subject(s)
Hypoxia/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Oxygen Consumption , Animals , Cell Hypoxia , Glucose , Hindlimb , Male , Myoglobin/metabolism , Oxygen/metabolism , Rats , Rats, Wistar , Tromethamine
13.
J Physiol ; 594(2): 483-95, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26584944

ABSTRACT

KEY POINTS: Mitochondrial respiration is regulated by multiple elaborate mechanisms. It has been shown that muscle specific O2 binding protein, Myoglobin (Mb), is localized in mitochondria and interacts with respiratory chain complex IV, suggesting that Mb could be a factor that regulates mitochondrial respiration. Here, we demonstrate that muscle mitochondrial respiration is improved by Mb overexpression via up-regulation of complex IV activity in cultured myoblasts; in contrast, suppression of Mb expression induces a decrease in complex IV activity and mitochondrial respiration compared with the overexpression model. The present data are the first to show the biological significance of mitochondrial Mb as a potential modulator of mitochondrial respiratory capacity. ABSTRACT: Mitochondria are important organelles for metabolism, and their respiratory capacity is a primary factor in the regulation of energy expenditure. Deficiencies of cytochrome c oxidase complex IV, which reduces O2 in mitochondria, are linked to several diseases, such as mitochondrial myopathy. Moreover, mitochondrial respiration in skeletal muscle tissue tends to be susceptible to complex IV activity. Recently, we showed that the muscle-specific protein myoglobin (Mb) interacts with complex IV. The precise roles of mitochondrial Mb remain unclear. Here, we demonstrate that Mb facilitates mitochondrial respiratory capacity in skeletal muscles. Although mitochondrial DNA copy numbers were not altered in Mb-overexpressing myotubes, O2 consumption was greater in these myotubes than that in mock cells (Mock vs. Mb-Flag::GFP: state 4, 1.00 ± 0.09 vs. 1.77 ± 0.34; state 3, 1.00 ± 0.29; Mock: 1.60 ± 0.53; complex 2-3-4: 1.00 ± 0.30 vs. 1.50 ± 0.44; complex IV: 1.00 ± 0.14 vs. 1.87 ± 0.27). This improvement in respiratory capacity could be because of the activation of enzymatic activity of respiratory complexes. Moreover, mitochondrial respiration was up-regulated in myoblasts transiently overexpressing Mb; complex IV activity was solely activated in Mb-overexpressing myoblasts, and complex IV activity was decreased in the myoblasts in which Mb expression was suppressed by Mb-siRNA transfection (Mb vector transfected vs. Mb vector, control siRNA transfected vs. Mb vector, Mb siRNA transfected: 0.15 vs. 0.15 vs. 0.06). Therefore, Mb enhances the enzymatic activity of complex IV to ameliorate mitochondrial respiratory capacity, and could play a pivotal role in skeletal muscle metabolism.


Subject(s)
Electron Transport Complex IV/metabolism , Mitochondria, Muscle/metabolism , Myoglobin/metabolism , Animals , Cell Line , Mice , Myoblasts/metabolism , Myoglobin/genetics
14.
J Physiol Biochem ; 73(3): 359-370, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28357578

ABSTRACT

Recent studies have suggested myoglobin (Mb) may have other cellular functions in addition to storing and transporting O2. Indeed, NMR experiments have shown that the saturated fatty acid (FA) palmitate (PA) can interact with myoglobin (Mb) in its ligated state (MbCO and MbCN) but does not interact with Mb in its deoxygenated state. The observation has led to the hypothesis that Mb can also serve as a fatty acid transporter. The present study further investigates fatty acid interaction with the physiological states of Mb using the more soluble but unsaturated fatty acid, oleic acid (OA). OA binds to MbCO but does not bind to deoxy Mb. OA binding to Mb, however, does not alter its O2 affinity. Without any Mb, muscle has a significantly lower level of triglyceride (TG). In Mb knock-out (MbKO) mice, both heart and skeletal muscles have lower level of TG relative to the control mice. Training further decreases the relative TG in the MbKO skeletal muscle. Nevertheless, the absence of Mb and lower TG level in muscle does not impair the MbKO mouse performance as evidenced by voluntary wheel running measurements. The results support the hypothesis of a complex physiological role for Mb, especially with respect to fatty acid metabolism.


Subject(s)
Myoglobin/metabolism , Oleic Acid/metabolism , Triglycerides/metabolism , Animals , Horses , Lipid Metabolism , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Myocardium/metabolism , Myoglobin/chemistry , Oleic Acid/chemistry , Protein Binding
15.
J Exp Biol ; 218(Pt 20): 3308-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26347554

ABSTRACT

The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products.


Subject(s)
Lactic Acid/metabolism , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Animals , Bicarbonates/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Dichloroacetic Acid/pharmacology , Glutamic Acid/metabolism , Male , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/metabolism , Rats , Rats, Sprague-Dawley
16.
Chem Phys Lipids ; 191: 115-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26220615

ABSTRACT

Previous studies have shown that palmitate (PA) can interact with myoglobin (Mb). The present study has investigated the interaction of the more soluble unsaturated fatty acid, oleic acid (OA). Indeed, (1)H NMR measurements of the Mb signal during OA titration also show signal changes consistent with specific and non-specific binding. At OA:Mb ratio<4:1, OA perturbs selectively the 8-heme methyl signal, consistent with a local and specific fatty acid-protein interaction. As OA:Mb ratio increases from 4:1 to 40:1, all hyperfine shifted MbCN signals decrease, consistent with a non-selective, global perturbation of the protein. The pH titration analysis indicates that the observed OA methylene signal in the presence of Mb reflects a non-specific interaction and does not originate from a shift in the lamella-micelle equilibrium. Given the OA interaction with Mb, a fatty acid flux model suggests that Mb can play a fatty acid transport role under certain physiological conditions.


Subject(s)
Myoglobin/chemistry , Oleic Acid/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Micelles , Myoglobin/metabolism , Oleic Acid/metabolism , Solubility
17.
Sci Rep ; 5: 9403, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25801957

ABSTRACT

At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Myoglobin/metabolism , Oxygen/metabolism , Physical Endurance/physiology , Animals , Kinetics , Male , Physical Conditioning, Animal , Rats , Rats, Wistar , Spectroscopy, Near-Infrared , Swimming
18.
Biochim Biophys Acta ; 1840(1): 656-66, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24482816

ABSTRACT

BACKGROUND: Previous studies have shown that palmitate (PA) can bind specifically and non-specifically to Fe(III)MbCN. The present study has observed PA interaction with physiological states of Fe(II)Mb, and the observations support the hypothesis that Mb may have a potential role in facilitating intracellular fatty acid transport. METHODS: 1H NMR spectra measurements of the Mb signal during PA titration show signal changes consistent with specific and non-specific binding. RESULTS: Palmitate (PA) interacts differently with physiological states of Mb. Deoxy Mb does not interact specifically or non-specifically with PA, while the carbonmonoxy myoglobin (MbCO) interaction with PA decreases the intensity of selective signals and produces a 0.15ppmupfield shift of the PAmethylene peak. The selective signal change upon PA titration provides a basis to determine an apparent PA binding constant,which serves to create a model comparing the competitive PA binding and facilitated fatty acid transport of Mb and fatty acid binding protein(FABP). CONCLUSIONS: Given contrasting PA interaction of ligated vs. unligated Mb, the cellular fatty acid binding protein(FABP) and Mb concentration in the cell, the reported cellular diffusion coefficients, the PA dissociation constants from ligated Mb and FABP, a fatty acid flux model suggests that Mb can compete with FABP transporting cellular fatty acid. GENERAL SIGNIFICANCE: Under oxygenated conditions and continuous energy demand, Mb dependent fatty acid transport could influence the cell's preference for carbohydrate or fatty acid as a fuel source and regulate fatty acid metabolism.


Subject(s)
Cell Physiological Phenomena , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Myoglobin/metabolism , Palmitates/metabolism , Animals , Biological Transport , Horses
20.
Contrast Media Mol Imaging ; 8(3): 252-64, 2013.
Article in English | MEDLINE | ID: mdl-23606429

ABSTRACT

We have engineered apolipoprotein A-I (apoA-I), a major protein constituent of high-density lipoprotein (HDL), to contain DOTA-chelated Gd(III) as an MRI contrast agent for the purpose of imaging reconstituted HDL (rHDL) biodistribution, metabolism and regulation in vivo. This protein contrast agent was obtained by attaching the thiol-reactive Gd[MTS-ADO3A] label at Cys residues replaced at four distinct positions (52, 55, 76 and 80) in apoA-I. MRI of infused mice previously showed that the Gd-labeled apoA-I migrates to both the liver and the kidney, the organs responsible for HDL catabolism; however, the contrast properties of apoA-I are superior when the ADO3A moiety is located at position 55, compared with the protein labeled at positions 52, 76 or 80. It is shown here that continuous wave X-band (9 GHz) electron paramagnetic resonance (EPR) spectroscopy is capable of detecting differences in the Gd(III) signal when comparing the labeled protein in the lipid-free with the rHDL state. Furthermore, the values of NMR relaxivity obtained for labeled variants in both the lipid-free and rHDL states correlate to the product of the X-band Gd(III) spectral width and the collision frequency between a nitroxide spin label and a polar relaxation agent. Consistent with its superior relaxivity measured by NMR, the rHDL-associated apoA-I containing the Gd[MTS-ADO3A] probe attached to position 55 displays favorable dynamic and water accessibility properties as determined by X-band EPR. While room temperature EPR requires >1 m m Gd(III)-labeled and only >10 µ m nitroxide-labeled protein to resolve the spectrum, the volume requirement is exceptionally low (~5 µl). Thus, X-band EPR provides a practical assessment for the suitability of imaging candidates containing the site-directed ADO3A contrast probe.


Subject(s)
Contrast Media/chemical synthesis , Electron Spin Resonance Spectroscopy/methods , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Nanocapsules , Proteins/chemistry , Binding Sites , Contrast Media/analysis , Drug Design , Nanocapsules/chemistry , Protein Binding , Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...