Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Respir Crit Care Med ; 198(6): 777-787, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29617574

ABSTRACT

RATIONALE: Myeloid-derived suppressor cell (MDSC) expansion has been found to play a role in disease progression in patients with cancer. However, the characteristics of MDSCs in lung cancer are poorly understood. OBJECTIVES: We prospectively investigated MDSCs and inflammatory factors in tumor and peripheral blood samples from patients with resectable non-small cell lung cancer and studied their correlations with the disease prognosis. METHODS: A complex analysis of MDSC subsets and inflammatory mediators was performed using flow cytometry and a Bio-Plex assay. MEASUREMENTS AND MAIN RESULTS: A significant increase in the frequency of circulating monocytic (M)-MDSCs was observed in the patients with non-small cell lung cancer compared with the healthy donors (HDs). Moreover, the frequencies of M- and polymorphonuclear (PMN)-MDSCs were higher in tumors than in the peripheral blood of the same patients. This accumulation was associated with elevated concentrations of inflammatory mediators involved in MDSC migration to and activation in the tumor microenvironment. An analysis of the MDSC immunosuppressive pattern showed increased programmed death-ligand 1 expression on circulating cells from patients compared with HDs. Tumor PMN-MDSCs displayed higher programmed death-ligand 1 expression levels than the same cells in the peripheral blood. The frequency of CCR5 (C-C chemokine receptor 5) expression on circulating M-MDSCs was significantly higher in the patients than in the HDs. Clinical data analysis revealed negative correlations between recurrence-free survival and the frequencies of PMN-MDSCs and CCR5+ M-MDSCs in the circulation but not in tumors. CONCLUSIONS: Our findings suggest that the level of MDSCs in the peripheral blood but not in tumor tissues predicts recurrence after surgery.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Myeloid-Derived Suppressor Cells/pathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Flow Cytometry , Humans , Male , Middle Aged , Prospective Studies , Young Adult
2.
Acta Neuropathol ; 134(2): 297-316, 2017 08.
Article in English | MEDLINE | ID: mdl-28332095

ABSTRACT

Glioblastoma (GBM) is a highly aggressive brain tumor and still remains incurable. Among others, an immature subpopulation of self-renewing and therapy-resistant tumor cells-often referred to as glioblastoma stem-like cells (GSCs)-has been shown to contribute to disease recurrence. To target these cells personalized immunotherapy has gained a lot of interest, e.g. by reactivating pre-existing anti-tumor immune responses against GSC antigens. To identify T cell targets commonly presented by GSCs and their differentiated counterpart, we used a proteomics-based separation of GSC proteins in combination with a T cell activation assay. Altogether, 713 proteins were identified by LC-ESI-MS/MS mass spectrometry. After a thorough filtering process, 32 proteins were chosen for further analyses. Immunogenicity of corresponding peptides was tested ex vivo. A considerable number of these antigens induced T cell responses in GBM patients but not in healthy donors. Moreover, most of them were overexpressed in primary GBM and also highly expressed in recurrent GBM tissues. Interestingly, expression of the most frequent T cell target antigens could also be confirmed in quiescent, slow-cycling GSCs isolated in high purity by the DEPArray technology. Finally, for a subset of these T cell target antigens, an association between expression levels and higher T cell infiltration as well as an increased expression of positive immune modulators was observed. In summary, we identified novel immunogenic proteins, which frequently induce tumor-specific T cell responses in GBM patients and were also detected in vitro in therapy-resistant quiescent, slow-cycling GSCs. Stable expression of these T cell targets in primary and recurrent GBM support their suitability for future clinical use.


Subject(s)
Antigens, Neoplasm/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Proteomics , T-Lymphocyte Subsets/pathology , Animals , Annexin A1/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Carcinogenicity Tests , Carrier Proteins/metabolism , Cells, Cultured , Chaperonin 60/metabolism , Cystatin A/metabolism , Disease Models, Animal , Epitope Mapping , Female , Humans , Interferon-gamma/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Microfilament Proteins/metabolism , Mitochondrial Proteins/metabolism , Neoplastic Stem Cells/pathology
3.
Cancer Immunol Immunother ; 62(6): 1053-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23595207

ABSTRACT

BACKGROUND: The bone marrow (BM) of breast cancer patients harbors tumor-reactive memory T cells (TCs) with therapeutic potential. We recently described the immunologic effects of adoptive transfer of ex vivo restimulated tumor-reactive memory TCs from the BM of 12 metastasized breast cancer patients in a clinical phase-I study. In this trial, adoptive T cell transfer resulted in the occurrence of circulating tumor antigen-reactive type-1 TCs. We here describe the long-term clinical outcome and its correlation with tumor-specific cellular immune response in 16 metastasized breast cancer patients, including 12 included in the original study. METHODS: Sixteen metastatic breast cancer patients with preexisting tumor-reactive BM memory TCs were included into the study. The study protocol involved one transfusion of TCs which were reactivated in vitro with autologous dendritic cells pulsed with lysates of MCF-7 breast cancer cells as source of tumor antigens. The presence of tumor-reactive memory TCs was analyzed by IFN-γ ELISpot assays. RESULTS: Tumor-reactive memory TCs in the peripheral blood were induced de novo in 7/16 patients (44 %) after adoptive TC transfer. These patients were considered immunologic responders to the therapy. Positive adoptive immunotherapy (ADI) response was observed significantly more often in patients without bone metastases (p = 0.0051), in patients with high levels of tumor-reactive BM TCs prior to therapy (p = 0.036) and correlated significantly with the estimated numbers of transferred tumor-reactive TCs (p = 0.0021). After the treatment, we observed an overall median survival of 33.8 months in the total cohort with three patients alive at last follow-up and more than 7 years after ADI. Numbers of transferred tumor-reactive TCs correlated significantly with the overall survival of patients (p = 0.017). Patients with an immunologic response to ADI in the peripheral blood had a significantly longer median survival than nonresponders (median survival 58.6 vs. 13.6 months; p = 0.009). CONCLUSION: In metastasized breast cancer patients, adoptive transfer of BM TCs can induce the presence of tumor antigen-reactive type-1 TCs in the peripheral blood. Patients with immunologic response after ADI show a significantly longer overall survival. Patients with bone metastases significantly less frequently respond to the treatment and, therefore, might not be optimal candidates for ADI. Although the present study does not yet prove the therapeutic effect of ADI, these findings shed light on the relation between immune response and cancer prognosis and suggest that transfer of reactivated BM TCs might bear therapeutic potential.


Subject(s)
Bone Marrow Cells , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Immunotherapy, Adoptive , T-Lymphocytes , Adult , Aged , Bone Marrow Cells/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Metastasis , T-Lymphocytes/immunology , Treatment Outcome
4.
J Clin Invest ; 119(11): 3311-21, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19809157

ABSTRACT

Spontaneous antitumor T cell responses in cancer patients are strongly controlled by Tregs, and increased numbers of tumor-infiltrating Tregs correlate with reduced survival. However, the tumor antigens recognized by Tregs in cancer patients and the impact of these cells on tumor-specific T cell responses have not been systematically characterized. Here we used a broad panel of long synthetic peptides of defined tumor antigens and normal tissue antigens to exploit a newly developed method to identify and compare ex vivo the antigen specificities of Tregs with those of effector/memory T cells in peripheral blood of colorectal cancer patients and healthy subjects. Tregs in tumor patients were highly specific for a distinct set of only a few tumor antigens, suggesting that Tregs exert T cell suppression in an antigen-selective manner. Tumor-specific effector T cells were detectable in the majority of colorectal cancer patients but not in healthy individuals. We detected differences in the repertoires of antigens recognized by Tregs and effector/memory T cells in the majority of colorectal cancer patients. In addition, only effector/memory T cell responses against antigens recognized by Tregs strongly increased after Treg depletion. The selection of antigens according to preexisting T cell responses may improve the efficacy of future immunotherapies for cancer and autoimmune disease.


Subject(s)
Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Amino Acid Sequence , Antigens, Neoplasm/chemistry , Histocompatibility Testing , Humans , Lymphocyte Depletion , Molecular Sequence Data , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...