Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 82(4): 715-731, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32970624

ABSTRACT

In the present work, native chitosan (Ch) along with its chemically and physico-chemically modified versions, namely sulphate cross-linked chitosan (SCC) and sulphate cross-linked chitosan-bentonite composite (SCC-B), were employed as potential adsorbents for the removal of an anionic dye, Alizarin Red S (ARS) from aqueous solutions. All three adsorbents were extensively characterized using techniques such as Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric-differential thermal analysis, and pH point of zero charge. Various parameters were optimized, including pH of dye solution, contact time, adsorbent dose, initial adsorbate concentration and temperature of adsorption. Four adsorption isotherm models were studied and it was found that the Freundlich model was best-fit for all three systems. Maximum adsorption capacities towards adsorption of ARS were found to be 42.48, 109.12 and 131.58 mg g-1 for Ch, SCC and SCC-B, respectively. Kinetics of adsorption was examined by employing three well-known models in order to deduce the mechanism of adsorption. Thermodynamic studies show that the process is spontaneous and exothermic for all adsorbents employed. Furthermore, it was observed that for large sample volumes, the column adsorption method was more effective compared to the batch method.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Anthraquinones , Humans , Hydrogen-Ion Concentration , Kinetics , Relative Energy Deficiency in Sport , Spectroscopy, Fourier Transform Infrared , Thermodynamics
2.
Carbohydr Polym ; 146: 264-73, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27112874

ABSTRACT

Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency.


Subject(s)
Chitosan/chemistry , Chromium/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/chemistry
3.
Int J Biol Macromol ; 80: 615-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26206740

ABSTRACT

Aliquat-336 (an ionic liquid) impregnated sulphate-crosslinked chitosan (SCC) was prepared for escalating the adsorption of hexavalent chromium through concurrent interaction. The compound obtained was intensively characterized using Fourier transform infra red (FT-IR), X-ray diffraction (XRD), Scanning electron microscopic (SEM) and Energy dispersive X-ray (EDX) studies. Various isotherm studies have been carried out to understand the adsorption mechanism. Quantitative adsorption of Cr(VI) was observed at pH 3.0 with adsorption capacity of 250.90 mg g(-1) in accordance with Langmuir isotherm. The adsorption of Cr(VI) followed pseudo-second-order kinetics. The adsorption efficiency was found to decrease with increase in temperature due to increased randomness at interaction sites. The adsorption process was found to be exothermic and spontaneous in nature. Column studies were carried out to understand the applicability of the material for higher sample volumes. The adsorbent could be regenerated using sodium hydroxide treatment and the regenerated adsorbent had same efficiency towards adsorption of Cr(VI) as that of the original.


Subject(s)
Chitosan/chemistry , Chromium/chemistry , Ionic Liquids/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...